Qemu在ARM和X86平台上的运行机制初探
User mode:用户模式,在这种模式下,QEMU 运行某个单一的程序,并且适配其的系统调用。通常我们遇到的异构 PWN 题都会使用这种模式,这种模式可以简单轻便的模拟出其他架构程序的执行过程,使做题人的重心倾斜于分析异构的题目文件上,而不是转换过程中。System mode:系统模式,在这种模式下,QEMU 可以模拟出一个完整的计算机系统。包含TCG/TCI两个后端。KVM Hosting 模式,使用KVM作为加速后端。
虚拟化
QEMU
KVM
IOMMU
Linux
设计模式
嵌入式系统
群论
数学
内存管理
DRM
SSHD
多媒体
服务器
工程
VIRTIO
net
贷款
购房
金融
算法
购车
物理
安全
人工智能
AI
进程管理
GPU
AMD
DEBUG
计算机系统
RTOS
处理器ISA
工具
方法论
MELIS
GPGPU
browser
LLAMA3-70B
笔记
CUDA
密码
network
uprobe
拓扑
逻辑
RDMA
docker
CPU
数据结构
青花瓷
MESI
计算
调度
Worker
PCIE
riscv
拓扑学
文件系统
NVIDIA
chatgpt
显示技术
操作系统
CCM
DAX
车载电子
yocto
C++
fence
汽车
bios
递归
IPC
几何
USB
LLVM
MCU
numa
非对称加密
opensbi
semihosting
EDA
SIMT
xenomai
小米12
计算机图形学
芯片
安全漏洞
geogebra
全志
v4l2
图论
WIFI
Pin
CXL
数据中心
产品体验
杂谈
android
音频
pytorch
IOT
视频 

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
资源
代码仓
问答
帖子
社区
课程
收藏
