skysenlin
码龄13年
求更新 关注
提问 私信
  • 博客:124,038
    社区:5,417
    129,455
    总访问量
  • 26
    原创
  • 36
    粉丝
  • 33
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2013-03-13
博客简介:

skysenlin的专栏

查看详细资料
个人成就
  • 获得96次点赞
  • 内容获得7次评论
  • 获得633次收藏
  • 代码片获得611次分享
  • 博客总排名1,915,951名
创作历程
  • 6篇
    2021年
  • 22篇
    2020年
成就勋章
TA的专栏
  • 基础知识
    7篇
  • 感情
  • nlp
    8篇
  • 算法
    2篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

python 小知识

#导入自己的包import syssys.path.append('E:/chinakeji/car/state/')
原创
博文更新于 2022.12.28 ·
791 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

发送邮件Python

import smtplibimport refrom email.header import Headerfrom email.mime.multipart import MIMEMultipartfrom email.mime.text import MIMETextfrom email.mime.application import MIMEApplicationimport configparser as ConfigParserdef get_mail_name(mail_add.
原创
博文更新于 2021.11.21 ·
972 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PYTORCH学习

一. TORCH官网官网链接:PyTorch An open source machine learning framework that accelerates the path from research prototyping to production deployment.https://pytorch.org/epochs = 1000#定义迭代次数二. Tensors三. Datasets and DataLoaders四. Transforms五. Build Mo
原创
博文更新于 2021.10.24 ·
1067 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《用户画像--方法论与工程化解决方法》读后感

前言第1章 用户画像基础11.1 用户画像是什么11.1.1 画像简介11.1.2 标签类型31.2 数据架构41.3 主要覆盖模块51.4 开发阶段流程71.4.1 开发上线流程71.4.2 各阶段关键产出91.5 画像应用的落地101.6 某用户画像案例111.6.1 案例背景介绍111.6.2 相关元数据121.6.3 画像表结构设计161.7 定性类画像211.8 本章小结22第2章 数据指标体系232.1 用户属性维度23
原创
博文更新于 2021.09.25 ·
1426 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

自然语言处理训练营NLP--笔记

任务010: 简单的复杂度的回顾任务011:归并排序:merge sort(归并)Divide and conquer—分治算法(category 属于这个范畴)A=[3,4,1,6,7,2,5,9]目标:sort(A)步骤:1、将数组分成两部分2、针对每部分排序3、对前后两部分对比后排序归并排序的时间复杂度是O(n logn)#merge and sortimport numpyimport pandasa=list(numpy.random.r...
原创
博文更新于 2021.09.04 ·
7591 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

根据身份证号计算周岁年龄

1、测试import pandas as pdimport datetimetemp_data='110221195404083625'v_start_date=temp_data[6:14]now = datetime.datetime.now()now = now.strftime('%Y%m%d')v_year_end=datetime.datetime.strptime(now, '%Y%m%d').yearv_month_end=datetime.datetime.strpti
原创
博文更新于 2021.04.08 ·
2645 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

python 安装包问题

一、[python] 安装TensorFlow问题 解决Cannot uninstall 'wrapt'. It is a distutils installed projectcmd安装 pip install tensorflow1.遇到了ERROR: Cannot uninstall 'wrapt'. It is a distutils installed project and thus we cannot accurately determine which files be.
原创
博文更新于 2021.03.09 ·
2233 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

数据埋点与数据需求文档

数据分析流程数据采集→指标建模→观测数据→数据分析→业务洞察,数据采集首当其冲,而数据采集中埋点是其中的一个重要方法,移动端的数据采集,一是为了服务于开发者,协助开发者分析各类设备信息;二是为了帮助各APP更好地了解自己的用户,了解用户在APP上的各类行为,帮助各应用不断进行优化,提升用户体验。一、 概述:数据采集1.1 收集需求收集数据来源于两个方面,一个是产品自身的指标建模,另一个是业务部门的分析需求,比如一个共享出行APP新上一个包月服务,其中最重要的模块是交易模块,相关的数据指标有...
原创
博文更新于 2021.01.13 ·
6930 阅读 ·
12 点赞 ·
0 评论 ·
98 收藏

用户画像理论和搭建过程

一、定义用户画像是根据目标用户的社会属性、生活习惯和其他行为信息,抽象出一个标签化的用户模型。标签是名词性的、碎片式的,比如说当我们在使用互联网的时候,那些给我们提供服务的公司都在给我们打标签,你的任何一个行为都有可能被它贴上一个小标签。你购买了任何一件产品,你浏览了任何一条新闻,你都可能被打上了一个小标签,你都不知道你身上已经悄悄地被它贴上了几十个甚至几百个这样的小标签。这些小标签就像是一个密码,当你被贴上了几百个这样的小标签的时候,它就好像是加了密的电文,机器就能够用这些小标签逐渐地合成一个形象
原创
博文更新于 2021.01.09 ·
796 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

PageRank算法原理及代码

本文内容出自帅器学习的课程内容,讲得原理清晰,概念深入,链接:https://www.bilibili.com/video/BV1m4411P76G?p=1
原创
博文更新于 2020.12.16 ·
12111 阅读 ·
23 点赞 ·
5 评论 ·
158 收藏

NLP中的红楼梦

兜兜转转学NLP学了一个月,结果还在皮毛上,今天打算使用NLP对自己喜欢的红楼梦进行梳理。一、分词,建立红楼梦词库分词方法分规则分词和统计分析,目前我们还没有红楼梦的词库,所以规则分词不适用,统计分析有两种算法:HMM和CRF1.1 HMM1.2 CRF1.3 衡量分词的一致性二、命名实体识别三、每章摘要四、每章内容概述五、每章内容标签六、红楼梦的社交网络七、每章内容概述八、每章内容概述九、每章内容概述未完待续......
原创
博文更新于 2020.12.11 ·
1720 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

python BUG解决之路

ImportError: cannot import name 'joblib' from 'sklearn.externals' 解决方法 将 from sklearn.externals import joblib 改为 import joblib
原创
博文更新于 2020.12.03 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法复杂度

任务010: 简单的复杂度的回顾任务011:归并排序:merge sort(归并)Divide and conquer—分治算法(category 属于这个范畴)A=[3,4,1,6,7,2,5,9]目标:sort(A)步骤:1、将数组分成两部分2、针对每部分排序3、对前后两部分对比后排序归并排序的时间复杂度是O(n logn)#merge and sortimport numpyimport pandasa=list(numpy.random.ra..
原创
博文更新于 2020.11.30 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

遍历每行,eval转成元组

cat a.txt (('aa','6L'),[('n','3CE'),('c','48'),('c','ff')])(('bb','5L'),[('n','4E5'),('c','28'),('c','2'),('c','8')])(('cc','2L'),[('n','5DC'),('c','108'),('c','4'),('c','2'),('c','4')])with open("D:/aaa/a.txt", "r", encoding="utf-8") as f: for .
原创
博文更新于 2020.11.30 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

nlp相关内容原理、实现和应用

本文内容转自:https://ailearning.apachecn.org/#/docs/nlp/一、分词--搜索功能--ChineseAnalyzer for Whoosh搜索引擎ChineseAnalyzer for Whoosh搜索引擎pip install whooshWhoosh是一个用来索引文本并能够根据索引搜索的包含类和方法的类库,它允许你开发一个针对自己内容的搜索引擎例如,如果你想创建一个博客软件,你可以使用Whoosh添加一个允许用户搜索博客类目的搜索功能代码案.
转载
博文更新于 2020.11.26 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

random.multivariate_normal和norm.rvs

np.random.multivariate_normal方法用于根据实际情况生成一个多元正态分布矩阵,其在Python3中的定义如下:def multivariate_normal(mean, cov, size=None, check_valid=None, tol=None) 其中mean和cov为必要的传参而size,check_valid以及tol为可选参数。mean:mean是多维分布的均值维度为1;cov:协方差矩阵,注意:协方差矩阵必须是对称的且需为半正定矩...
原创
博文更新于 2020.11.24 ·
4482 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

贝叶斯概率

原创
博文更新于 2020.11.20 ·
444 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

详解动态规划算法(Python)

动态规划解题四组成部分1、确定状态解动态规划的时候需要一个数组,数组的每个元素F[i],或者F[i,j]代表什么需要明确;确定状态需要两个意识:1.1 最后一步k枚硬币a a a...a,面值加起来应该等于11,最后的硬币是a1.2 子问题除掉最后一枚硬币,前面的k-1枚硬币加起来应该等于27-a​​​​​​​,因为是最有策略,所以拼出2、建立状态转移方程3、初始条件和边界情况4、计算顺序...
原创
博文更新于 2020.11.15 ·
7479 阅读 ·
25 点赞 ·
0 评论 ·
194 收藏

算法训练

讲师:覃超平台:极客时间账号:小宝微信网址:https://time.geekbang.org/一、数组、链表、跳表的原理和实现1、数组:list=[],数组里面的类型是泛型;数组在内存中开辟了一段连续的地址,可以通过内存管理器访问,访问任何一个元素的时间复杂度都是O(1)插入、删除的时间复杂度是O(N)2、链表:参考文章:https://www.cnblogs.com/mooncode/p/11039266.html链表这种数据结构,在一些修改、增.
原创
博文更新于 2020.11.02 ·
1510 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

根据点大小生成分布及模拟分布

根据经纬度位置和点大小生成分布及模拟分布项目背景:根据北京市图书馆位置及借书人数,生成图书馆服务分布。一、原始数据:图书馆数据:site_id longitude latitude num(借书人数)         下载地址:链接:https://pan.baidu.com/s/1U12xMBEPveK7-Hah3yvqKQ提取码:hi6o二、数据处理...
原创
博文更新于 2020.10.30 ·
695 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多