自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

百锦再的博客

每天进步一点点,成全别人,成就自己。

  • 博客(1101)
  • 资源 (18)
  • 收藏
  • 关注

原创 第3章 变量与数据类型

本文介绍了Rust语言中变量与数据类型的基本概念,重点探讨了变量声明、可变性特点、变量遮蔽与重声明的区别,以及常量与静态变量的使用。Rust默认变量不可变,需使用mut关键字声明可变变量;变量遮蔽允许在同一作用域内重新声明同名变量并改变其类型;常量和静态变量分别使用const和static声明,但静态变量可变时需要unsafe块操作。文章通过代码示例展示了各种变量使用场景,包括基础声明、作用域规则、高级解构模式等,提供了Rust变量系统的全面视图。

2025-11-02 23:38:01 488 37

原创 第2章 第一个Rust程序

本文详细介绍了Rust的第一个程序开发过程。主要内容包括:1)Hello World程序的基本结构分析,涵盖函数定义、注释系统和println!宏的使用;2)深入讲解println!宏的高级格式化功能,包括位置参数、命名参数和调试输出;3)解释Rust程序的编译运行过程,包括预处理指令、类型检查和所有权机制;4)通过故意制造错误来展示Rust编译器的错误提示功能;5)Cargo包管理器的项目结构详解和TOML配置文件说明。文章通过丰富代码示例,全面展现了Rust程序从基础到高级的各种特性,为初学者提供了系统

2025-11-02 00:49:17 1076 33

原创 第1章 Rust语言概述

Rust语言概述:从诞生到核心特性 Rust是一门由Graydon Hoare于2006年创建的系统编程语言,旨在解决C/C++中的内存安全和并发安全问题。Mozilla于2009年接管项目并应用于浏览器引擎开发。2015年发布的Rust 1.0版本确立了语言的稳定性,2021年成立的Rust基金会确保了其可持续发展。 Rust的核心特性包括革命性的所有权系统(编译时保证内存安全)、借用检查机制和生命周期管理,实现了零成本抽象。其并发模型通过独特的所有权系统防止数据竞争,支持安全的消息传递和共享状态线程。R

2025-11-02 00:38:15 1065 16

原创 一文读懂负载均衡:从原理到实践的全方位解析

摘要 负载均衡是数字世界的"交通枢纽",通过合理分配用户请求确保服务高可用性、高性能和可扩展性。其核心原理包括多层级架构(二至七层)、健康检查机制和会话保持技术。常见算法分为静态(轮询、加权轮询、源地址哈希)和动态(最小连接数、最短响应时间等)两类,根据场景选择最优方案。负载均衡广泛应用于Web服务、微服务架构等领域,通过Nginx等工具实现高效流量分发,是构建现代IT系统的关键技术。

2025-11-01 01:21:33 597 15

原创 双机热备技术详解:从原理到实践

双机热备技术通过主备服务器架构确保关键业务持续运行,主要包括三种工作模式:热备(Active/Standby)、互备和双工(Active/Active)。其核心机制包括心跳检测、数据同步(共享存储或镜像)和故障自动切换。主流实现方案有基于共享存储的标准方案和纯软件方案,各具优缺点。系统设计需重点考虑切换时间、数据一致性(防止脑裂)和性能负载。实施过程涵盖前期规划、硬件部署、网络配置和全面测试。该技术为服务器故障提供自动恢复能力,显著提升系统可用性,是保障关键业务连续性的重要解决方案。

2025-10-29 15:03:09 976 22

原创 Go与Python在AI大模型开发中的深度对比分析

摘要:Go与Python在AI大模型开发中的对比分析 在AI大模型开发领域,Python凭借其丰富的生态系统(PyTorch/TensorFlow)、动态语言特性和交互式开发环境(Jupyter),长期占据主导地位,特别适合快速原型设计和实验研究。而Go语言凭借静态类型系统、卓越的并发性能(goroutine/channel)和高效的编译执行,在AI基础设施、模型服务和生产部署方面展现出独特优势。 关键对比维度: 开发阶段适配:Python更适合数据探索、模型实验等研究阶段,Go更擅长构建高并发服务、分布式

2025-10-28 17:05:59 795

原创 国产数据库的标杆项目:金仓在浙江省人民医院大有作为

浙江省人民医院作为省内规模最大的三甲医院,携手电科金仓打造国内首个LIS系统国产化多院区多活改造案例。针对集团化医院信创面临的兼容性、业务连续性等挑战,采用"异构多活容灾架构"技术方案,实现三大数据中心互为主备、秒级切换,业务连续性达99.99%,数据调用效率提升60%。该项目不仅为浙人医构建了安全可靠的技术底座,更形成可复制的集团化医院信创解决方案,为医疗行业数字化转型提供了示范样本。

2025-10-28 16:40:49 106280 1

原创 Python、Java与Go:AI大模型时代的语言抉择

AI大模型开发语言三强格局形成:Python主导研究(占TIOBE指数50%),Java专注企业集成,Go领跑云原生服务(580万开发者)。三者形成研发-部署-服务完整链路。 核心优势对比: Python:PyTorch/TensorFlow生态支持,开发效率提升40% Go:延迟降低30%,K8s/Docker原生支持 Java:JVM调优减少GC停顿60%,Hadoop/Spark大数据处理 应用场景分化: 研究:Python快速原型开发 部署:Go构建高性能API网关 集成:Java对接企业现有系统

2025-10-27 14:24:52 12569 3

原创 抓住鸿蒙生态崛起机遇:开发者全面指南

鸿蒙系统发展现状与学习路径分析 鸿蒙系统已快速迭代至4.0版本,形成与安卓、iOS三足鼎立的格局,其核心优势在于分布式架构设计,支持跨设备无缝协同。市场机遇包括中国政策支持、全球IoT增长和5G技术普及,目前生态设备已超3亿。 学习路径分为三个阶段: 入门阶段(1-2月):掌握ArkTS/Java语言和分布式基础概念 进阶阶段(3-6月):深入分布式能力开发与UI框架 高级阶段(6月+):专攻系统架构设计与生态集成 开发者可选择应用开发或系统开发方向,重点行业包括智能家居、车载系统等,需应对分布式一致性、多

2025-10-26 23:09:49 853

原创 卡号生成网站设计与实现

本文介绍了一个卡号生成网站的设计与实现方案。该工具支持用户自定义卡号位数(8-128位)、字符类型(数字/字母/混合)、大小写规则及生成数量(100-10000条)。项目采用HTML5+CSS3+JavaScript技术栈,包含简洁的UI界面设计、响应式布局和实用功能如下载与复制结果。系统架构分为前端展示层与生成算法层,核心算法包括随机数生成、字符映射和重复检测机制。文章详细说明了项目结构、HTML页面布局和CSS样式设计要点,为开发此类工具提供了完整参考方案。

2025-10-26 22:47:37 580

原创 破茧成蝶:全方位解析Java学习难点与征服之路

Java学习难点与进阶路线 摘要:本文系统分析了Java学习中的核心难点,包括面向对象思想的内化、异常处理机制、集合框架和I/O流体系等关键问题。针对每个技术难点,提供了深度解析和实用解决方案,强调基础知识和实践结合的重要性。同时,文章提出了一套科学的学习路径:从Java基础到高级特性,再到主流框架和系统设计,帮助学习者建立完整的知识体系。通过认知重建、刻意练习和项目驱动的方法,引导学习者从入门到精通,最终成为能解决复杂问题的Java专家。

2025-10-25 21:03:08 770 1

原创 国产数据库替代MongoDB的技术实践:金仓数据库赋能浙江省人民医院信息化建设新展望

浙江省人民医院实现医疗信创突破 浙江省人民医院采用金仓数据库完成LIS系统国产化改造,打造国内首个异构多院区多活数据底座,实现四大技术创新:异构组网、多活容灾、多写同步和卫星方案。系统灾备能力达6级标准(RTO≤10分钟,RPO=0),业务连续性99.99%,数据调用效率提升60%。富阳院区率先实现全栈信创和业务系统云化部署,成为医疗信创样板。该案例为多院区医院信创建设提供了“先试点后推广”的可复制路径,并深度契合浙江省健康云规划,推动医疗信息化自主可控发展。

2025-10-25 01:55:36 11059

原创 国产数据库的成神之路堪比西游记的八十一难

摘要: 浙江省人民医院(浙人医)率先实现LIS系统国产化异构多院区多活改造,采用金仓数据库构建数据底座,攻克多院区数据互通难题。通过四大技术创新,实现RTO≤10分钟、RPO=0的6级灾容标准,业务连续性达99.99%,数据调用效率提升60%。富阳院区率先落地全栈信创与云化部署,成为医疗信创样板。该实践为多院区医院信创建设提供了“先试点后推广”的可行路径,同步展示了KingbaseES数据库的增删改查基础操作规范。

2025-10-24 17:13:19 14294

原创 ABP Framework 与 若依(RuoYi) 产品可用性全方位碰撞

ABP Framework与若依(RuoYi)在架构设计、功能定位和用户体验上存在显著差异。ABP基于领域驱动设计(DDD)和整洁架构,面向中大型企业开发,提供模块化、国际化的解决方案,支持多种现代前端框架和技术栈,API设计规范,适合构建复杂业务系统。若依则更注重快速开发,采用传统Java Web技术栈,功能密集且符合国内用户习惯,适合快速交付内部管理系统。两者在目标用户群体、技术生态和设计理念上各有侧重,ABP适合追求代码质量和可维护性的技术驱动团队,而若依更适合需要快速上线的国内项目。

2025-10-22 20:15:19 1070

原创 若依(RuoYi)低代码框架全面分析

摘要:若依(RuoYi)是基于Spring Boot的权限管理系统,采用经典三层架构,具备完整的RBAC权限控制体系。其突出特点是高度模块化设计和强大的代码生成器,可快速生成前后端代码,显著提升开发效率。然而,该框架存在技术栈保守、生成代码灵活性不足、性能优化有限等短板,适合企业内部管理系统等传统项目,但不适用于高并发互联网应用或需要高度定制化的场景。学习其完整体系需投入较多时间,对技术驱动型团队可能吸引力不足。

2025-10-22 20:05:31 1883 1

原创 低代码开发的约束性及ABP框架的实践解析

文章摘要: 低代码开发平台(LCDP)通过可视化建模和预置组件加速应用开发,但面临可定制性、平台锁定、性能等约束。ABP框架(ASP.NET Boilerplate Project)基于领域驱动设计和模块化架构,提供了一种平衡效率与灵活性的解决方案。其分层设计、依赖注入和模块化系统(支持独立开发与拓扑排序加载)有效缓解了低代码的局限性。作为"代码优先"的低代码方案,ABP通过生成可扩展的标准化代码,既提升开发效率,又避免技术债务和供应商锁定,尤其适合需要定制化能力的企业级应用开发。

2025-10-22 10:09:38 769

原创 对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析

本文对比分析了前后端分离与不分离两种架构模式。前后端不分离采用服务端渲染(SSR),后端直接生成HTML页面,开发效率高但耦合严重;前后端分离通过API通信,实现职责分离,提升维护性和扩展性,但初期成本较高。文章从开发效率、性能、可维护性和测试四个维度详细对比了两者的优劣势,并结合技术发展历程说明分离架构是应对复杂Web应用和移动互联网的必然选择。最后通过Spring Boot+Thymeleaf和React+Spring Boot两个代码示例,直观展示了两者的实现差异。

2025-10-21 16:42:00 809 1

原创 Vue Scoped样式混淆问题详解与解决方案

Vue Scoped样式混淆问题解析与解决方案 Vue的<style scoped>虽然能通过添加data-v-*属性实现样式隔离,但在实际开发中仍会出现同名样式混淆问题。主要原因包括: 类名重复:不同组件使用相同类名时,scoped仅添加属性选择器,不会修改类名本身 作用域穿透:子组件根元素会继承父组件scopeId,父组件样式可能影响子组件 第三方库冲突:全局样式与scoped样式共存时可能产生覆盖问题 解决方案: CSS Modules:通过编译生成唯一类名实现真正隔离(<style

2025-10-21 09:51:53 1023

原创 Loc云鼎入主客户管理信息系统

本文介绍了一个基于Spring Boot和Vue的企业管理系统架构设计。系统采用前后端分离模式,后端使用Spring Boot+Spring Security+JPA技术栈,前端采用Vue3+Element Plus框架,数据库使用MySQL+Redis组合,并实现JWT认证和权限控制。数据库设计包含用户、角色、权限、公司、联系人、业务和收费等核心表结构。后端项目采用分层架构,包含配置层、控制层、实体层、数据访问层等模块,核心实体类以公司(Company)为中心,关联联系人(Contact)、业务(Busi

2025-10-20 10:20:44 803

原创 Java Web API 开发完整指南

本文介绍了一个基于Spring Boot 3.x的Java Web API项目架构,主要包含以下内容:1. 技术栈选择,包括Spring Boot、Spring Security、JWT认证、JPA数据访问等;2. 项目搭建过程,提供了Maven配置和YAML应用配置示例;3. 系统架构设计,展示分层结构和请求流程;4. 核心代码片段,如用户实体类的实现。该项目采用现代Java技术栈,适合构建RESTful Web服务,包含用户认证、数据持久化等基础功能模块。

2025-10-18 17:53:05 617

原创 Python数据统计完全指南:从入门到实战

本文介绍了Python数据统计分析的完整流程,包括环境配置、数据获取、清洗预处理等核心环节。首先展示了Python数据科学生态系统(Pandas、NumPy、Matplotlib等)的配置方法,然后详细讲解了从CSV、Excel、SQL和API等不同数据源加载数据的实现代码。文章重点演示了数据探索分析技术,包括基本统计信息查看、缺失值检测与处理(删除、填充、插值等方法),以及针对分类变量的独热编码等预处理技术。通过可复用的类和方法封装,为数据统计分析提供了标准化的工作流程参考。

2025-10-04 18:23:10 5542 1272

原创 快学快用系列:一文学会java后端WebApi开发

Web API开发基础与实践摘要 Web API是基于HTTP协议的应用接口,采用RESTful架构风格,具有无状态、可缓存等特点。本文介绍了Spring Boot开发Web API的全流程: 环境搭建:使用JDK 11+、Spring Initializr创建项目,配置MySQL数据库和 status 状态字段 架构设计:采用分层架构(Controller-Service-Repository-Model),包含DTO模块化包结构 数据模型:详细设计实体类(如User)和数据传输对象DTO(UserDTO

2025-10-01 21:25:12 3021 1488

原创 从 .NET 到 Java 的转型指南:详细学习路线与实践建议

本文探讨了从.NET转向Java开发的关键要点,主要包括: 转型背景分析 Java在跨平台、生态系统、成本控制和人才储备方面具有优势 .NET与Java在运行时环境、内存管理机制上存在架构差异 语言基础对比 Java的基本数据类型与包装类体系 字符串处理机制(String/StringBuilder/StringBuffer) 面向对象特性的实现差异(类继承、接口等) 学习策略建议 利用两种语言在OOP概念上的相似性 重点关注平台特性、工具链和部署方式的差异 文章通过大量代码示例(如类型系统、资源管理、字符

2025-09-29 00:31:18 2337 1908

原创 虚幻的“必赢牌术”:一场注定失败的技术与人生赌博

摘要 本文通过技术分析与道德探讨,揭示现代网络棋牌游戏“透视”外挂的不可行性。核心原因在于: 服务器权威架构:游戏逻辑完全由服务器控制,客户端仅显示有限信息,无法获取他人牌面数据。 高强度加密:通信采用TLS/SSL及自定义加密,截获数据几乎不可能破解。 作者结合伪代码示例,说明发牌流程的严密性,并强调此类外挂往往关联非法赌博,最终呼吁远离赌博,选择健康生活。技术屏障与法律风险共同证明,“透视”外挂是徒劳且危险的幻想。

2025-09-27 14:22:25 1131 1990

原创 Jenkins 全面精通指南:从入门到脚本大师

Jenkins 核心概念与部署 Jenkins 支持自由风格项目和 Pipeline 项目,前者适合简单任务,后者使用代码定义复杂工作流。部署步骤包括:下载 war 包、配置环境变量、启动服务(建议设置 JVM 内存参数),并完成初始化配置(如修改插件镜像源)。 Pipeline 语法详解 Pipeline 分脚本式(灵活)和声明式(推荐)两种,核心结构包含 agent(执行环境)、stages(阶段)和 steps(步骤)。支持 Docker 容器、并行任务、环境变量及错误处理(如 post 块实现构建后

2025-09-27 13:55:12 2957 2029

原创 图数据库的基本使用方法详解

文章摘要 本文系统介绍了图数据库的核心概念、技术特点及应用场景。图数据库以节点、关系和属性高效表达复杂网络关系,适用于社交网络、推荐系统等领域。重点讲解了Neo4j等主流图数据库的数据建模方法,包括Cypher查询语言的基本操作和复杂查询示例,并提供了Python连接Neo4j的代码实现。通过社交网络建模实例,展示了图数据库在关系遍历与推荐算法中的优势,为开发者提供从入门到实践的完整指南。(148字) 关键词:图数据库、Neo4j、Cypher、数据建模、复杂查询

2025-09-27 03:01:19 1062 2165

原创 一文读懂AI语言模型

本文系统介绍了AI语言模型的发展历程、核心技术原理及典型应用。从早期的统计语言模型(如N-gram)到神经网络语言模型(RNN、LSTM),再到革命性的Transformer架构,详细解析了自注意力机制等关键技术。文章重点分析了主流模型如GPT、BERT、T5等的特点,并提供了BERT情感分类的PyTorch微调代码示例。最后通过Hugging Face库演示了GPT-2文本生成实践,为读者提供了从理论到实践的完整学习路径,适合NLP研究者和开发者参考。(摘要字数:149字)

2025-09-27 02:54:09 2157 2119

原创 国产数据库的平替亮点——关系型数据库架构适配

福建某地市电子证照系统国产化改造面临三大难题:2TB+数据迁移、1000+并发压力及MongoDB文档架构适配问题。金仓数据库提供定制化解决方案,通过多模兼容实现MongoDB零代码替换,读写分离集群提升并发能力至1600+连接数,并开发专用迁移工具完成数据无损迁移。系统稳定运行6个月,支撑500余家单位证照共享服务,为政务数字化提供了可复制的国产化路径。

2025-09-26 15:08:55 25258 2141

原创 老乡会网站 - 技术方案与实现

老乡会网站实现方案 本项目采用Flask+Vue.js技术栈构建老乡会网站,包含以下核心功能: 后端架构: 使用Flask框架搭建RESTful API 采用SQLAlchemy ORM进行数据库操作 实现JWT认证机制保障系统安全 模块化设计(用户认证、需求管理、公告发布、评论系统) 数据库设计: 用户表:存储用户基本信息及权限 需求表:记录老乡互助需求 公告表:管理组织公告 评论表:支持需求讨论 前端架构: Vue 3组合式API开发 Element Plus组件库 Vue Router管理路由 Axi

2025-09-23 23:40:19 1591 952

原创 一文掌握Flask:从基础使用到高级应用

Flask是一个轻量级Python Web框架,具有简单、灵活、可扩展的特点。文章首先介绍了Flask的核心特性,包括轻量级设计、Jinja2模板引擎、RESTful支持等,并与Django框架进行了对比。接着详细讲解了Flask的安装配置、虚拟环境创建和基本程序结构,包括路由定义、视图函数和开发服务器启动。最后深入解析了Flask的核心组件,如灵活的路由系统、请求对象处理和多种响应方式。Flask适用于从API开发到微服务架构等多种Web开发场景,尤其适合需要高度定制化的项目。

2025-09-21 17:02:06 1852 590

原创 [特殊字符] Python在CentOS系统执行深度指南

在CentOS上安装和配置Python环境时,常遇到系统自带Python 2.7限制、依赖缺失等问题。文章详细介绍了源码编译安装Python 3的方法,强调使用altinstall避免覆盖系统Python,并解决SSL模块问题。同时讲解了pip包管理权限问题、虚拟环境创建与管理的最佳实践,包括venv模块使用和requirements文件管理。针对国内用户,还提供了配置镜像源加速下载的方案,为Python开发环境搭建提供了全面的指导。

2025-09-15 19:52:42 3287 242

原创 在 CentOS 系统上实现定时执行 Python 邮件发送任务

CentOS系统定时发送Python邮件的五种方案 本文介绍在CentOS系统上定时发送Python邮件的五种方法: Cron作业:最经典的定时任务工具,配置简单,适合基础调度需求。 Systemd定时器:现代Linux系统的原生方案,支持灵活调度和服务管理。 APScheduler库:Python内置的轻量级定时任务框架,适合复杂调度逻辑。 Celery+Redis:分布式任务队列方案,支持重试和任务监控,适合企业级应用。 Jenkins作业:通过CI/CD工具实现,适合需要可视化管理的场景。 每种方案都

2025-09-10 16:25:38 3672 243

原创 三种适用于Web版IM(即时通讯)聊天信息的加密算法实现方案

即时通讯端到端加密(E2EE)方案概述 本文介绍了即时通讯(IM)系统中端到端加密(E2EE)的核心概念和实现方案。E2EE通过客户端加密确保消息仅在发送方和接收方之间可读,防止服务器或第三方窃取敏感信息。文章首先阐述了E2EE的必要性及其安全目标(保密性、完整性、身份验证和不可否认性),然后详细讲解了对称加密(如AES)、非对称加密(如RSA/ECC)、混合加密系统、数字签名和密钥派生函数等核心密码学概念。第一部分介绍了基础方案——静态非对称加密,包括密钥生成、消息加密传输和解密的完整流程,并提供了使用n

2025-09-10 16:13:51 5686 232

原创 若依(RuoYi)从入门到精通

若依(RuoYi)是一款基于Spring Boot和Vue的前后端分离权限管理系统,提供RBAC权限控制、用户管理、菜单权限等企业级功能。它支持多版本选择,推荐初学者使用前后端分离版(RuoYi-Vue)。部署需准备JDK、MySQL、Redis等环境,通过修改配置文件连接数据库并启动前后端服务。核心模块包括用户管理、角色权限分配等,采用MyBatis、Vuex等技术实现。作为国内知名开源项目,若依能显著提升开发效率,适合快速构建后台管理系统。

2025-09-10 13:43:58 1840 79

原创 构建第二大脑的两种范式:Notion与Obsidian的终极哲学对决与实践指南

Notion vs Obsidian:知识管理工具的核心哲学与功能对比 Notion和Obsidian代表了两种截然不同的知识管理理念。Notion作为"一体化协作战舰",以模块化设计、数据库驱动和云端协作为核心,提供开箱即用的结构化工作环境,擅长团队协作和项目管理。Obsidian则是"去中心化思维武器库",基于纯文本本地存储和双向链接,打造高度个性化的互联知识系统,更注重隐私保护和深度思考。两者在编辑体验、知识组织、协作分享等方面各具优势:Notion在排版布局、

2025-09-08 19:06:25 1922 96

原创 Obsidian如何成为成熟程序员的思维武器库与职业罗盘

摘要 Obsidian作为一款基于双向链接的知识管理工具,深刻契合程序员思维模式,通过模拟大脑的网状联想、可视化知识图谱、纯文本可扩展性及插件生态,成为技术从业者构建有机知识网络的核心工具。其双向链接特性打破信息孤岛,将碎片化知识转化为动态关联体系;知识图谱帮助发现技术盲区、理清架构关系;Markdown与本地存储确保数据可控性,而丰富插件支持从代码片段管理到自动化工作流。 在软件工程实践中,Obsidian贯穿学习、设计、开发、调试全流程:链接技术概念深化理解,记录架构决策(ADR),构建错误库(Erro

2025-09-08 18:59:15 998 80

原创 脚本语言的大浪淘沙或百花争艳

现代的观点更倾向于将语言视为一个光谱,从“用于系统编程”到“用于脚本编写”。本文讨论的是在“脚本”领域表现出色的语言。

2025-09-05 15:57:48 1379 124

原创 盘点那些自带高级算法的SQL

SQL背后的算法宝库:从排序到概率统计 SQL语句背后隐藏着数据库系统精心优化的算法体系。排序操作(ORDER BY)根据数据规模自动选择算法:内存充足时采用快速排序/内省排序;大数据量时启用归并排序为核心的外部排序,通过分治策略和K路归并高效处理磁盘数据。聚合运算(GROUP BY)则主要依赖哈希聚合算法,通过哈希表实时更新聚合状态,实现单次扫描完成计算;对于海量数据去重统计(COUNT DISTINCT),数据库采用HyperLogLog概率算法,仅用KB级内存就能实现亿级数据基数估算,误差控制在1%以

2025-09-05 08:23:42 1894 131

原创 内存数据对比速度优化方案详解

内存数据对比速度优化方案 核心影响因素 硬件层面:CPU核心数、内存带宽、缓存命中率、SIMD指令集 算法层面:时间复杂度、数据结构选择、并行化能力 数据特性:数据规模、维度、分布特征 五种优化方案 基础并行化+缓存优化: 多线程处理外层循环 循环重排优化内存访问模式 C++实现示例展示OpenMP并行和缓存友好访问 SIMD向量化加速: 使用AVX指令集并行处理多个数据 示例代码展示AVX内联函数实现 空间分区树(KD-Tree): 预处理B数据集构建KD-Tree 近似最近邻搜索降低复杂度 局部敏感哈希

2025-09-05 08:16:50 929 88

原创 设计五种算法精确的身份证号匹配

摘要:本文介绍了两种从大型Excel文件中快速匹配身份证号的算法。第一种是暴力双重循环法,虽简单但效率极低,时间复杂度O(n*m),预估耗时数小时。第二种利用Pandas的isin()方法,通过集合查询和向量化操作优化性能,时间复杂度显著降低。测试数据包含小表(5000条)和大表(140000条),使用Python的pandas库处理。算法二通过将小表数据转为集合,利用isin()快速筛选匹配记录,大幅提升效率,适合实际应用场景。

2025-09-04 17:24:28 1140 49

用传统cv算法和卷积神经网络实现手势识别.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

专注优化算法开发,包括以下方面: (1)启发式算法,元启发式算法,群智能优化算法(2)凸优化 (3)多目标优化.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用Paddle框架实现了胶囊网络模型.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

以树莓派的Raspbian系统为基础平台,使用Qt Creator进行界面开发.zip

在树莓派上使用Raspbian系统进行Qt Creator界面开发是一个相对直接的过程。以下是基本步骤: 1. **安装Raspbian**: 确保你的树莓派已经安装了Raspbian操作系统。你可以从树莓派官方网站下载最新版本的Raspbian,并使用NOOBS或通过SD卡烧录器安装到SD卡上。 2. **更新系统**: 在开始之前,确保你的系统是最新的。打开终端并运行以下命令: ```bash sudo apt-get update sudo apt-get upgrade ``` 3. **安装Qt Creator**: Raspbian默认仓库中包含了Qt Creator,你可以通过以下命令安装: ```bash sudo apt-get install qtcreator ``` 这将会安装Qt Creator以及一些必要的工具和库。 4. **配置Qt Creator**: 打开Qt Creator,你可能需要配置一些设置,比如构建套件(Kit)。在“工具”->“选项”->“构建和运行”

2024-06-05

学习神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

一个中国象棋程序和一个配套的基于蒙特卡洛算法及神经网络的人工智能(模仿阿尔法狗).zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

图神经网络相关算法详述及实现.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

学习的一些基本神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

实现了深度学习中的一些算法,包括:四种初始化方法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用机器学习对城市房价进行预估.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

图神经网络各个算法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

自动驾驶AI小车,基于遗传算法优化神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用BP算法实现神经网络.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

用logistic回归,SVM,神经网络实现分类算法.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

一个蒙特卡洛树搜索算法实现的五子棋 AI+现可用神经网络训练模型。.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

使用神经网络+ 遗传算法实现机器人路径规划.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

神经网络入门 实现测评针对分类问题的攻击 防御算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

在MATLAB上实现车牌识别的程序,识别算法有两种,分别为神经网络和模板匹配.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

梯度下降算法的神经网络例子.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用 Django 框架搭建学习平台,实现KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络等算法及流程管理.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

.net core Webapi代码生成工具(自动连接数据库)

另外,我这里有漂亮的自动生成脚本。我也可以教你怎么用。

2025-02-07

ar家具购物平台,个人毕业设计.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019本科毕业设计:基于UNet的遥感图像语义分割.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2021年毕业设计 (计算机科学与技术专业).zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2021.6毕业设计-基于SSM与Java的电影网站的设计与实现.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

BiShe Project 毕业设计 测井数据采集系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019年毕业设计-解魔方机器人.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019毕业设计,基于android 的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

针对三维模型检索,并采用卷积神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

2017.8.28毕业设计,VB论坛网站,用到php,mysql,html,css,js,jquery.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019年-毕业设计-百度网盘资源搜索引擎网站的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

Chinese Rumor Recognition 本科毕业设计论文-中文谣言检测.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2017毕业设计:基于android的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2018毕业设计,多人房间匹配你画我猜

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022毕业设计Vue_SpringBoot.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

1412基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统设计毕业源码案例设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2020毕业设计:毕业设计选题系统.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2016毕业设计_航空订票系统的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022 毕业设计,基于 Hadoop 的游戏数据分析系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

针对无线信道“指纹”特征建模.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除