DreamBoy@
码龄6年
求更新 关注
提问 私信
  • 博客:142,501
    社区:255
    动态:87
    视频:34
    142,877
    总访问量
  • 72
    原创
  • 2,565
    粉丝
  • 180
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2020-02-19

个人简介:Forever younger , Always learn.

博客简介:

siper12138的博客

查看详细资料
个人成就
  • 获得517次点赞
  • 内容获得55次评论
  • 获得1,600次收藏
  • 代码片获得2,075次分享
  • 博客总排名27,187名
  • 原力等级
    原力等级
    5
    原力分
    1,133
    本月获得
    5
创作历程
  • 17篇
    2025年
  • 6篇
    2023年
  • 7篇
    2022年
  • 43篇
    2021年
成就勋章
TA的专栏
  • 人工智能学习笔记
    12篇
  • 论文精读
    3篇
  • 408 复习笔记
    4篇
  • 学习笔记
    12篇
  • 数据处理
  • 【预测分析】cnn+tensorflow 实现四种工具分类
    2篇
  • 【python 】编程练习
    3篇
  • 【笔记】操作系统+知识梳理
    2篇
  • 【python项目flask微框架】(在线的笔记记录系统)
    10篇
  • pgmpy
    1篇
  • Graph AI
    2篇
  • 环境配置
    5篇
  • 人脸识别
    1篇
  • MySQL数据库基础操作
    4篇
  • 【c++】编程练习
    4篇
  • 【C++项目】基于MFC的音频播放器
    1篇
  • 【实验操作】计算机网络
    7篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 12

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    数据挖掘计算机视觉目标检测机器学习人工智能深度学习神经网络自然语言处理知识图谱语言模型nlp集成学习AI作画
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

Graph RAG

《知识图谱增强RAG系统:超越向量搜索的信息整合》摘要 传统向量搜索在信息检索中存在语义局限,知识图谱通过结构化关系网络提供了更丰富的上下文。本文系统分析了图数据库与知识图谱的技术优势,包括关系表征能力、动态扩展性和可解释性,并对比了向量搜索在精确查询和语义搜索中的差异化表现。
原创
博文更新于 2025.10.06 ·
1058 阅读 ·
15 点赞 ·
0 评论 ·
25 收藏

提示词工程(Prompt Engineering)

提⽰⼯程是⼀个较新的学科,应⽤于开发和优化提⽰词(Prompt),帮助用户有效地将语⾔模型⽤于各种应⽤场景和研究领域。掌握了提⽰⼯程相关技能将有助于用户更好地了解⼤型语⾔模型的能⼒和局限性。研究⼈员可利⽤提⽰⼯程来提⾼⼤语⾔模型处理复杂任务场景的能⼒,如问答和算术推理能⼒。开发⼈员可通过提⽰⼯程设计和研发出强⼤的技术,实现和⼤语⾔模型或其他⽣态⼯具的⾼效接轨。为了提⾼⼤语⾔模型的性能使其更可靠,⼀个重要的提⽰⼯程技术是将任务分解为许多⼦任务。
原创
博文更新于 2025.06.28 ·
1506 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

Transformer《Attention is all you need》

本文介绍了Transformer模型,这是一种基于自注意力机制的深度学习架构,彻底改变了序列建模方式。研究显示,Transformer摒弃了传统RNN和CNN结构,仅依赖多头自注意力机制,在机器翻译任务中表现卓越。实验表明,该模型在WMT2014英德翻译任务上达到28.4 BLEU值,英法任务上取得41.8 BLEU值,且训练效率显著提升。模型优势包括:计算并行化能力强、长距离依赖捕捉能力优异、训练速度比循环网络快。论文还验证了Transformer在英语成分句法分析任务中的泛化能力,其表现优于传统序列模型
原创
博文更新于 2025.05.29 ·
820 阅读 ·
27 点赞 ·
0 评论 ·
10 收藏

人工智能文献翻译训练v1

人工智能相关文献翻译训练v1( Meta - learning,Transformer )
原创
博文更新于 2025.05.28 ·
1241 阅读 ·
27 点赞 ·
0 评论 ·
12 收藏

人工智能文献翻译训练v2

人工智能文献翻译v2(AlexNet, COT, DeepSeek)
原创
博文更新于 2025.05.28 ·
833 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

【408--考研复习笔记】操作系统----知识点速览

操作系统(Operating System,简称 OS)是管理计算机硬件与软件资源的程序,是计算机系统的核心与基础。它是用户和计算机硬件之间的接口,同时也是计算机系统资源的管理者。
原创
博文更新于 2025.05.28 ·
3339 阅读 ·
32 点赞 ·
0 评论 ·
98 收藏

人工智能通识速览(Part5. 大语言模型)

1.NLP自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,专注于研究 计算机如何理解、生成和处理人类语言。它的目标是让机器能够像人类一样“读懂”文本或语音,并执 行翻译、问答、摘要等任务。大模型不仅仅是模型规模庞大,也涵盖了训练数据规模庞大,以及由此衍生出的模型能力的强大。截止 2024 年 6 月,国内外已经见证了超过百种大语言模型的诞生,这些大语言模型在学术界和工业界 均产生了深远的影响。描述了在。
原创
博文更新于 2025.05.28 ·
604 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

OpenManus + DeepSeek 如何使用

安装Anaconda(详细)_anaconda安装教程-CSDN博客。DeepSeek API 申请与使用-CSDN博客。Anaconda 教程 | 菜鸟教程。Git 安装配置 | 菜鸟教程。
原创
博文更新于 2025.04.18 ·
1116 阅读 ·
20 点赞 ·
0 评论 ·
28 收藏

DeepSeek API 申请与使用

1.进入官网DeepSeek | 深度求索2.进入API开放平台3.充值(不充值无法使用)4.用量信息查询,查询请求次数,与对应费用。
原创
博文更新于 2025.04.18 ·
1909 阅读 ·
13 点赞 ·
0 评论 ·
7 收藏

人工智能通识速览(Part4. 评估指标)

PR 曲线以精确率(Precision)为纵坐标,召回率(Recall)为横坐标。在不同的分类阈值下,模型会产生不同的精确率和召回率,将这些点连接起来就形成了 PR 曲线。精确率是指预测为正例的样本中真正正例的比例,召回率是指真实正例中被预测为正例的比例。PR 曲线展示了模型在精确率和召回率之间的权衡关系,曲线上的每个点代表了模型在某个特定阈值下的性能表现。
原创
博文更新于 2025.04.07 ·
1096 阅读 ·
10 点赞 ·
1 评论 ·
20 收藏

人工智能通识速览(Part3. 强化学习)

强化学习是机器学习中的一个重要领域,它涉及智能体(agent)如何在环境中采取一系列行动,以最大化累积奖励。:是一个能够感知环境并采取行动的实体,如机器人、自动驾驶汽车或游戏中的角色等。:智能体所处的外部世界,它会根据智能体的行动产生相应的反馈,包括奖励信号和新的状态。:描述环境在某一时刻的信息,智能体根据当前状态来决定采取何种行动。:智能体可以执行的操作,例如在游戏中移动、跳跃,机器人的前进、转弯等。:环境给予智能体的反馈信号,用于衡量智能体的行动在实现目标方面的好坏程度。
原创
博文更新于 2025.04.07 ·
990 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

人工智能通识速览(Part2. 神经网络)

本文主要包含神经网络相关内容,包含参数优化、激活函数、损失函数、常见的神经网络(包含经典的MLP, 图像领域经典的VGG,ResNet,Yolo,transformer及其变体bert,gpt等, 以及GAN网络结构)
原创
博文更新于 2025.04.07 ·
1053 阅读 ·
28 点赞 ·
0 评论 ·
24 收藏

人工智能通识速览.(Part1.机器学习)

本文主要包含,机器学习概述,正则化方法,以及常用的机器学的算法,包含集成学习、回归模型,支持向量机、树模型家族,聚类模型等。
原创
博文更新于 2025.04.07 ·
1279 阅读 ·
28 点赞 ·
0 评论 ·
29 收藏

【408--考研复习笔记】计算机网络----知识点速览

网络体系结构是指计算机网络的各层及其协议的集合,它从功能上描述了计算机网络的结构,规定了网络中各层的功能、各层之间的接口以及各层所使用的协议。它是一种抽象的概念,用于指导计算机网络的设计、实现和维护,使得不同厂家的设备能够相互通信和协同工作。
原创
博文更新于 2025.04.04 ·
3151 阅读 ·
25 点赞 ·
0 评论 ·
95 收藏

后端开发常见的面试问题

tugraph, tigergraph, hugegraph 区别,各自的优缺点,各自的创新点。来指定要匹配的图模式。
原创
博文更新于 2025.04.04 ·
1219 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

【408--考研复习笔记】数据结构----知识点速览

本文参考《2026王道计算机考研-数据结构》,笔记包含数据结构所有相关内容。绪论(算法定义特征)、线性表(顺序存储、链式存储)、受限线性表(栈、队列、串)、树与二叉树(AVL,BST,哈夫曼树、红黑树)、图(最短路径、最小生成树、拓扑排序、AOV,AOE)、查找(顺序查找、树型查找(B,B+),哈希查找),排序()
原创
博文更新于 2025.04.01 ·
1114 阅读 ·
6 点赞 ·
0 评论 ·
18 收藏

【408--考研复习笔记】计算机组成原理----知识点速览

原码形式简单、与真值一致,0的表示不唯一,加减法复杂。补码0的表示唯一,用带符号位加法执行减法原码最高位为符号位(正0负1),其余是数值绝对值;正数反码、补码与原码相同,负数反码是原码除符号位外按位取反,补码是反码加1。相互转换遵循相应规则,补码再求补得原码。
原创
博文更新于 2025.04.01 ·
1307 阅读 ·
18 点赞 ·
0 评论 ·
46 收藏

【PGMPY】 1. DAG基础结构

贝叶斯网络的纯python实现,用途:结构学习、参数估计、近似(基于采样)精确推理因果推理。
原创
博文更新于 2023.07.28 ·
683 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

EvolveGCN 原理解读

H 更关注节点上的信息,-O 更关注图整体结构的变化。GCN与RNN的结合体:以此捕捉动态图的动态特征。提取某一时刻图节点的特征,但是不对参数进行修改。结合相邻时刻图节点的特征更新GCN的参数。
原创
博文更新于 2023.07.27 ·
770 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux常用操作

【代码】Linux常用操作。
原创
博文更新于 2023.07.27 ·
315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多