Gavin在路上
码龄11年
求更新 关注
提问 私信
  • 博客:75,876
    75,876
    总访问量
  • 103
    原创
  • 162
    粉丝
  • 102
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2014-06-25
博客简介:

shine0312的专栏

博客描述:
温故而知新
查看详细资料
个人成就
  • 获得703次点赞
  • 内容获得5次评论
  • 获得789次收藏
  • 博客总排名18,422名
  • 原力等级
    原力等级
    4
    原力分
    490
    本月获得
    85
创作历程
  • 66篇
    2025年
  • 7篇
    2021年
  • 17篇
    2019年
  • 10篇
    2018年
  • 4篇
    2016年
  • 1篇
    2014年
成就勋章
TA的专栏
  • Mysql
  • 面试经典题目
    4篇
  • 性能调优
    1篇
  • 设计模式

TA关注的专栏 13

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 搜索
    elasticsearch
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

企业架构之TOGAF 方法论入门与实战指南(2)

TOGAF 是由组织开发的一套企业架构框架。你可以把它理解为“企业 IT 建设的城市规划指南”。它不提供具体的软件代码,也不规定你必须用 Java 还是 Go,它提供的是一套方法论(Methodology)和工具集,教你如何从零开始规划、设计、实施和治理一个庞大的企业级架构。TOGAF 的核心视角被称为“4A 架构”业务架构 (Business Architecture):企业的战略、治理、组织结构和关键业务流程。(解决“做什么”的问题)数据架构 (Data Architecture)
原创
博文更新于 20 小时前 ·
416 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

智能体之构建长短期记忆:深入解析 mem0 框架与实战

mem0是一个开源的大模型智能记忆层不同于简单的 LangChain ConversationBufferMemory 或原始的向量数据库(Vector DB),mem0 的核心理念是**“以用户/实体为中心的动态记忆管理”**。它不仅是存数据,更是管理记忆的状态。构建 AI Native 应用,不仅仅是调用 API 那么简单。短期记忆决定了对话的流畅度,而长期记忆决定了 Agent 的智商上限和用户粘性。mem0 提供了一种优雅、解耦的方式来管理智能体的长期记忆。
原创
博文更新于 20 小时前 ·
572 阅读 ·
19 点赞 ·
0 评论 ·
9 收藏

dubbo源码之一次RPC请求的生死之旅(基于Dubbo 2.7.8)

每一层(Proxy, Cluster, Protocol, Exchange, Transport)职责清晰,互不干扰。利用 DefaultFuture 和 Request ID 机制,在 Netty 异步通讯的基础上实现了对上层业务的同步阻塞假象,降低了开发复杂度。IO 线程与业务线程分离(AllDispatcher),保证了高并发下 Netty IO 的吞吐量,防止业务逻辑阻塞网络读写。
原创
博文更新于 前天 18:30 ·
772 阅读 ·
17 点赞 ·
0 评论 ·
7 收藏

SpringAIAlibaba之Graph深度解析与实战(6)

线性逻辑(Chain):用户提问 -> 检索 RAG -> 生成答案。这是 ChatClient 擅长的。循环逻辑(Loop):写代码 -> 运行报错 -> 读取错误 -> 修改代码 -> 再运行。这是 Graph 擅长的。是一个基于状态机(State Machine)和图论(Graph Theory)的低代码编排框架。它对标的是 Python 界的LangGraph。首先,我们需要定义 Agent 的大脑里存什么东西。// Agent 的共享内存状态// 用户需求// 生成的代码// 审查意见。
原创
博文更新于 2025.12.17 ·
668 阅读 ·
16 点赞 ·
0 评论 ·
6 收藏

dubbo源码之微服务治理的“隐形遥控器”——QOS 机制解析

Dubbo QOS 是一个典型的**“旁路设计”**。它不影响主业务链路,但在运维层面提供了极大的便利。它是微服务可观测性(Observability)和可控制性(Controllability)的体现。它是 SPI 扩展机制、Wrapper 包装模式和 Netty 网络编程的完美结合。欢迎关注、一起交流、一起进步~
原创
博文更新于 2025.12.16 ·
692 阅读 ·
10 点赞 ·
0 评论 ·
17 收藏

SpringAIAlibaba之高级特性与实战场景全解析(5)

高级特性适用场景核心价值订票、查库、IoT控制、RPA解决模型无法与外部世界交互的问题,实现“执行”数据清洗、爬虫解析、表单提取解决模型输出不可控的问题,实现“系统集成”拍照问答、语音助手、视频分析拓展输入维度,从“文本交互”升级为“感官交互”合同审查、分级知识库、精准搜索解决向量检索精度低、无权限控制的问题欢迎关注、一起交流、一起进步~
原创
博文更新于 2025.12.16 ·
465 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

SpringAIAlibaba之打造“长了脑子”的电商客服 Agent(4)

我们定义一个普通的 Java Function,用来查订单。codeJava@Bean@Description("根据订单ID查询订单的物流状态和详情") // 这里的描述非常关键,大模型靠它决定是否调用// 模拟查询数据库System.out.println("正在查询订单系统: " + request.orderId());return new OrderQueryResponse("1001", "已发货", "顺丰快递");
原创
博文更新于 2025.12.16 ·
812 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

SpringAIAlibaba之Spring AI Alibaba 源码模块全解析(3)

工程化、标准化、企业可持续演进。它是 AI 能力进入 Java 企业应用体系的关键桥梁。最近官方和社区又有新的消息,可能SpringAIAlibaba的定位会有一定的转变,后续待消息明确之后,我会在该系列为大家及时同步。欢迎关注、一起学习、一起进步~
原创
博文更新于 2025.12.15 ·
1020 阅读 ·
9 点赞 ·
0 评论 ·
18 收藏

AI学习之Anthropic的访谈者工具

发布了一个基于 Claude 的自动化访谈工具;用它对 1,250 名专业人士进行了有关 AI 使用与态度的访谈;分析了访谈结果并讨论了用户对 AI 的感受与预期;强调使用这种大规模的研究方法来提升 AI 产品和社会理解。
原创
博文更新于 2025.12.15 ·
958 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

AI学习之检测多智能体系统中的视角转变

该论文的核心贡献在于首次为黑箱多智能体系统的行为动态监测提供了 principled 框架——TDKPS 通过时间维度的低维嵌入,将不可见的行为动态转化为可量化、可检验的几何特征,两类假设检验则解决了不同粒度的变化检测需求。其价值不仅体现在技术上填补了黑箱多智能体动态分析的空白,更在应用上为生成式智能体的安全部署、公共事件的影响模拟提供了实用工具,同时也为后续研究指出了 “时间建模深化”“语义可解释性”“因果融合” 等关键方向。欢迎关注、一起学习、一起进步~
原创
博文更新于 2025.12.08 ·
800 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

DDD之用事件风暴重构“电商订单履约”(11)

事件风暴的价值在于它把隐晦的、藏在业务专家脑子里的逻辑,显性化地变成了墙上的“便利贴流程图”。橙色定义了结果。蓝色定义了API。浅黄定义了核心模型。画圈定义了微服务边界。做完这一场风暴,你的系统架构图、核心类图、API 列表基本上就自动生成了 80%。这就是领域驱动设计最性感的地方。
原创
博文更新于 2025.12.04 ·
610 阅读 ·
11 点赞 ·
0 评论 ·
7 收藏

AI学习之大模型涌现

大模型的真正智能不是人类设计的,而是规模越大,语言统计分布越丰富,能力在某个阈值后自动涌现。欢迎关注,一起学习,一起进步!!!
原创
博文更新于 2025.12.01 ·
820 阅读 ·
19 点赞 ·
0 评论 ·
20 收藏

架构设计之COLA架构实战

在 COLA 中,开发通常从“定义外部如何与我们交互”开始。在 client 模块中,我们需要定义 DTO 和 API。codeJava// 1. 定义命令请求 (UserRegisterCmd.java)@NotNull@NotNull// 2. 定义服务接口 (UserServiceI.java)首先,我们在 Domain 层定义一个扩展点接口,继承 ExtensionPointI。这个接口定义了那些“因人而异”的逻辑钩子。codeJava// 定义注册流程中的差异化钩子。
原创
博文更新于 2025.11.30 ·
644 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

架构设计之COLA架构

COLA架构并不是一项具体的技术创新,而是一次对软件工程设计原则的回归与标准化。作为架构师,我们在选择COLA时,看中的不仅仅是它的代码模板,更是它背后蕴含的DDD(领域驱动设计)思想。欢迎关注,一起交流,一起进步~
原创
博文更新于 2025.11.30 ·
971 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

AI学习之大模型如何连续工作超过24h

2025年的今天,大模型更迭更加快速频繁,功能更迭更加炸裂,这一切好像在发出一个相同的信号,就是AGI的到来,作为程序员的我们,在面对当前的局面应该如何破局可能是我们非常关心的问题,后续会开一篇文章专题介绍下。欢迎关注,一起交流,一起进步~
原创
博文更新于 2025.11.23 ·
327 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

AI学习之大模型聊天基本原理

这是一个基本的例子,也是进入AI应用开发的一个基本认知,后续本系列介绍下大模型内部的原理、比如大模型的网络架构。欢迎关注、留言、一起交流~
原创
博文更新于 2025.11.23 ·
520 阅读 ·
16 点赞 ·
0 评论 ·
5 收藏

智能体之设计范式(4)

智能体设计范式的选择不应视为非此即彼的取舍,而应基于具体应用场景的需求、约束条件与演进路径进行系统化权衡。反应式架构适用于确定性高、实时性要求严苛的场景;慎思式架构在知识密集型复杂决策中展现优势;混合式架构则为平衡实时性与适应性提供了可行路径;多智能体系统在解决分布式复杂问题时表现出集体智能的潜力;而具身智能体则代表了智能与物理世界深度融合的未来方向。随着大模型技术的突破,智能体正从工具向伙伴角色演进,这要求设计范式不仅要关注技术能力,更要重视人机协同、价值对齐与社会影响。
原创
博文更新于 2025.11.23 ·
565 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

DDD之任务调度:基于Quartz的领域驱动任务调度框架设计(10)

这种基于DDD原则的任务调度框架设计,通过合理的抽象和分层,成功实现了业务逻辑与调度机制的解耦。框架提供了完善的重试机制、事务管理和生命周期控制,既保证了系统的可靠性,又具备了良好的扩展性和可维护性。在实际应用中,该框架有效解决了分布式系统中常见的任务调度问题,为构建稳定可靠的业务系统提供了强有力的技术支撑。通过持续的优化和完善,这套任务调度框架将成为系统架构中不可或缺的重要组件。
原创
博文更新于 2025.09.15 ·
816 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

技术方案之数据迁移方案

此时,团队需要将旧库的数据迁移到新的 MySQL 实例(如云数据库、分库分表架构)。在打开双写的时候,CDC还要继续同步,这是为了防止打开双写的瞬间丢数据,那么这里就需要做好幂等方案,比如主键,比如业务做幂等,再比如upsert等,防止CDC和双写重复写的问题。:待增量数据追平、校验通过后,将应用流量逐步切换到新库,实现无感知迁移。这种方式虽然实现复杂,但能做到业务不停机,适合高并发、核心系统场景。:在迁移期间,应用可选择性双写新旧库,对比校验数据一致性;,以确保数据一致性和业务连续性。
原创
博文更新于 2025.09.08 ·
358 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

技术方案之Mysql部署架构

中小业务:优先选择 “主从复制 + 应用层读写分离”,以最低的运维成本实现基础高可用,避免过度设计;中高并发业务:推荐 “MGR 集群 + Sharding-JDBC”,利用 MGR 的自动故障切换和无延迟复制提升可用性,通过分表解决大表压力;超大规模业务:需结合 “分库分表 + 异地多活 + 云原生运维”,通过业务拆分和异地部署实现弹性扩展和容灾,同时依赖自动化工具降低运维复杂度。此外,无论选择哪种架构,都需注意三个核心细节(重要考虑删除跑路的场景,哈哈。
原创
博文更新于 2025.09.03 ·
880 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏
加载更多