新缸中之脑
码龄14年
求更新 关注
提问 私信
  • 博客:5,478,408
    社区:667
    问答:666
    动态:6
    5,479,747
    总访问量
  • 1,090
    原创
  • 8,346
    粉丝
  • 15
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2012-05-25
博客简介:

新缸中之脑

博客描述:
Brain in a vat
查看详细资料
个人成就
  • 获得9,362次点赞
  • 内容获得733次评论
  • 获得23,039次收藏
  • 代码片获得32,163次分享
  • 博客总排名1,111,070名
  • 原力等级
    原力等级
    9
    原力分
    9,419
    本月获得
    49
创作历程
  • 3篇
    2025年
  • 400篇
    2024年
  • 492篇
    2023年
  • 89篇
    2022年
  • 43篇
    2021年
  • 18篇
    2020年
  • 34篇
    2019年
  • 20篇
    2018年
  • 18篇
    2017年
成就勋章
TA的专栏
  • Gen-AI
    16篇
  • 元宇宙
    9篇
  • three.js
    11篇
  • 数字孪生
    130篇
  • python
    3篇
  • BIM
    36篇
  • 机器学习
    27篇
  • 学习编程
    4篇
  • 数据分析
  • 深度学习
    14篇
  • tensorflow
    3篇
  • 机器学习
    34篇
  • 自然语言处理
    3篇
  • numpy
    3篇
  • nltk
    1篇
  • 意图识别
    1篇
  • RNN
    1篇
  • Keras
    1篇
  • 递归神经网络
    1篇
  • 口语理解
    1篇
  • 自然语言理解
    1篇
  • 自编码器
    1篇
  • 人工智能
    11篇
  • 强化学习
    2篇
  • 算法
    2篇
  • scikit
    1篇
  • 神经网络
    4篇
  • 胶囊网络
    1篇
  • 自动驾驶
    1篇
  • 产业观察
  • 区块链
    11篇
  • vue
    1篇
  • webpack
  • vue.js
    1篇
  • 服务端渲染
    1篇
  • 前端开发
    2篇
  • Flask框架
    1篇
  • PLC
  • 梯形图
  • 移动开发
  • NLP
    2篇
  • 新手
    1篇
  • 语音识别
    1篇
  • 少儿编程
    1篇
  • 编程入门
    3篇
  • Flutter
    2篇
  • php
    2篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 1

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

30人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

ComfyUI-PromptOptimizer:文生图提示优化节点

是 ComfyUI 的一个自定义节点,旨在优化文本转图像模型的提示。它将用户输入的提示转换为更详细、更多样化、更生动的描述,使其更适合生成高质量的图像。无需本地模型。
原创
博文更新于 2025.01.17 ·
1989 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

ComfyUI-Polinations:无需本地模型的文生图节点

自定义节点允许你在 ComfyUI 工作流中直接使用 Pollinations 的强大 AI 模型生成图像。无需自己下载模型,也无需 API 密钥。
原创
博文更新于 2025.01.17 ·
1970 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

ComfyUI-AppGen节点包:用自然语言生成Web应用

充当编程机器人的可自定义 LLM 客户端。它可以根据自然语言提示生成代码。它适用于任何支持 OpenAI API 的 LLM。它在测试模型上产生高度准确和高效的结果。
原创
博文更新于 2025.01.04 ·
1222 阅读 ·
10 点赞 ·
0 评论 ·
13 收藏

ComfyUI-Autodistill:图像集自动标注生成目标检测数据集

节点利用基础模型对指定的图像文件进行自动标注,生成目标检测数据集。base_model:基础模型,由节点加载input_folder:待标注的图像文件目录extension:待标注图像文件的后缀,默认:'png'output_folder:待生成数据集的保存目录,包含原始图像和标注信息dataset:生成的目标检测数据集。
原创
博文更新于 2024.12.11 ·
1392 阅读 ·
30 点赞 ·
0 评论 ·
28 收藏

ComfyUI-PandasAI:与表格数据对话

FileConnector可以上传本地的数据文件作为数据分析的数据源,目前支持csv和xlxs。file:已上传的数据文件connector:数据源连接对象BambooLLM 主要针对数据分析。它旨在理解和执行与数据分析、数据处理和数据可视化相关的自然语言查询。可以在这里注册以获取免费 API 密钥。api_key:API密钥llm:LLM对象。
原创
博文更新于 2024.12.11 ·
1210 阅读 ·
22 点赞 ·
0 评论 ·
21 收藏

扩散模型和重新照明的未来

重新照明(relighting)是在给定输入场景的情况下,在指定的目标照明条件下渲染场景的任务。这是计算机视觉和图形学中的关键任务。然而,这是一个不适定问题,因为场景中物体的外观是由光源、几何形状和表面材料属性等因素之间的复杂相互作用产生的。这些相互作用会产生歧义。例如,给定一个场景的照片,物体上的黑点是由于照明投射的阴影造成的,还是材料本身的颜色很暗?区分这些因素是有效重新照明的关键。在这篇博文中,我们讨论了不同的论文如何通过扩散模型解决重新照明问题。
原创
博文更新于 2024.11.06 ·
1311 阅读 ·
23 点赞 ·
0 评论 ·
14 收藏

用Python可视化海量点云

数据可视化是一个大问题🌶️:通过使用视觉元素对信息进行图形表示,我们可以最好地呈现和理解数据中的趋势、异常值和模式。你猜对了:使用代表真实世界形状的 3D 点云数据集,这是强制性的 🙂。本文处理和可视化无人机 3D 点云。你将在实时可视化和创建动画的同时学习特征提取、交互式和自动分割但是,当从激光扫描仪或摄影测量等 3D 重建技术收集时,点云通常过于密集,无法进行经典渲染。在许多情况下,数据集将远远超过 1000 万大关,这使得它们对于 Matplotlib 等经典可视化库来说不切实际。
原创
博文更新于 2024.11.06 ·
2386 阅读 ·
27 点赞 ·
0 评论 ·
32 收藏

计算几何算法的应用

计算几何是计算机科学的一个分支,专注于创建几何问题求解算法。许多行业,包括计算机图形学、机器人技术、地理信息系统、计算机视觉和计算生物学,都在一系列应用中使用这些方法。它是计算机科学的一个分支,具有广泛的应用范围。计算几何在模式识别、计算机图形学、运筹学、制造和计算机辅助设计等领域面临着多项挑战。计算机图形学和 CAD/CAM(计算机辅助设计和制造)的进步是计算几何作为一门学科发展的主要驱动力。然而,许多计算几何问题具有经典性质,可以源于数学可视化。
原创
博文更新于 2024.11.02 ·
1738 阅读 ·
16 点赞 ·
0 评论 ·
27 收藏

ARKit可视化LiDAR点云

在这篇由两部分组成的文章中,我们构建了一个基本的 AR 应用程序,该应用程序能够使用 ARKit 和 LiDAR 在 Swift 中生成和呈现 3D 点云。我们发现了如何提取 LiDAR 数据,将其转换为 3D 空间中的点,并将其合并为单个点云,以及将其导出并共享为 .PLY 文件的能力。这个应用程序只是一个开始。你可以通过添加更高级的过滤等功能来进一步增强它,允许用户调整点云密度,或者通过根据距离或其他因素替换网格字典中的点来提高云质量。
原创
博文更新于 2024.11.01 ·
1187 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

ARKit读取LiDAR点云

ARKit 是 Apple 强大的增强现实框架,允许开发人员制作专为 iOS 设备设计的沉浸式交互式 AR 体验。对于配备 LiDAR 的设备,ARKit 充分利用了深度感应功能,大大提高了环境扫描精度。与许多体积庞大且价格昂贵的传统 LIDAR 系统不同,iPhone 的 LiDAR 结构紧凑、经济高效,并可无缝集成到消费设备中,使更广泛的开发人员和应用程序能够使用高级深度感应。LiDAR 允许创建点云,点云是一组数据点,表示 3D 空间中物体的表面。
原创
博文更新于 2024.11.01 ·
1521 阅读 ·
11 点赞 ·
0 评论 ·
21 收藏

3D游戏阴影技术综合指南

在维姆·文德斯 (Wim Wenders) 的优秀作品《完美的日子》 (Perfect Days) 的结尾,男主角平山 (Hirayama) 在桥下喝啤酒,因为他看到一个商人在追求他的暗恋对象。突然,商人在桥下加入了他。然后他们走进路灯的光亮中,调查他们的影子(完整场景):《完美的日子》(2023) 中的标志性场景。剧照来自 film-grabs.com。尽管商人看不出有什么不同,但平山确信重叠的阴影确实变暗了。“它必须变暗才能有意义。”多么感人的场景。不幸的是,平山搞错了。阴影在那里不会变暗。
原创
博文更新于 2024.10.31 ·
952 阅读 ·
24 点赞 ·
0 评论 ·
24 收藏

AR基础知识:SLAM同时定位和构图

在中,我们了解了算法如何识别相机帧中的关键点。这些是跟踪和识别环境的基础。对于增强现实,设备必须知道更多信息:它在世界上的 3D 位置。它通过自身与多个关键点之间的空间关系来计算这一点。这个过程称为“同时定位和地图构建” - 简称 SLAM。
原创
博文更新于 2024.10.31 ·
1768 阅读 ·
12 点赞 ·
0 评论 ·
19 收藏

为Meta Spark准备3D模型

有许多工具可以帮助你为 Meta Spark Studio 创建 3D 对象,包括 Cinema4D、Blender 和 3ds Max。你还可以使用 Meta Spark Toolkit 优化 Blender 对象。在本指南中,我们将介绍正确的设置,以便你可以成功地为 Meta Spark Studio 准备对象,并确保它们在你的体验中更有效地工作。
原创
博文更新于 2024.10.31 ·
1223 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

Grasshopper Brep 快速指南

Brep 是边界表示的缩写,是 3D 建模和 CAD 应用程序用来表示 3D 对象的方法,通过定义其体积的极限来表达3D对象。想象一下 3D 对象作为实体。Brep 关注包围该实体的边界。与其他可能使用多边形或顶点的表示不同,Brep 由其表面之间的数学关系定义。这种数学精度可以更准确地表示复杂的形状和轮廓。在 Rhino 和 Grasshopper 的背景下,你可以将 Brep 视为与“多面体”相同。
原创
博文更新于 2024.10.30 ·
3024 阅读 ·
22 点赞 ·
0 评论 ·
25 收藏

10个领先的增强现实平台【AR】

增强现实 (AR) 被描述为一种通过计算机生成的内容增强现实世界的交互式体验。使用软件、应用程序和硬件(例如 AR 眼镜),AR 能够将数字内容叠加到现实环境和物体上。早在 2024 年,许多像 Apple 这样的公司就已进入 VR/AR 市场,推出了新的耳机和工具,让用户体验一种新的人机交互形式。考虑到这一点,AI Magazine 考虑了一些致力于利用最新技术的领先 AR 平台。
原创
博文更新于 2024.10.30 ·
4002 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

OpenCascade 形状遍历API

在 Open CASCADE 中,有不同的 API 可用于探索给定的形状(shape)。还有一些其他技术是探索形状的基础。在本文中,你将了解我尝试探索形状的不同技术和 API。那么,让我们开始旅程吧。在本文中,我们将探索 6 个 API。
原创
博文更新于 2024.10.30 ·
1210 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

Google Vertex AI 模型花园

查看下图 Vertex AI 中的 Model Garden UI,它似乎只是另一个可搜索的模型存储库。每个模型都有一个模型卡,提供概述、潜在用例、API 使用说明等。这些模型卡根据模式、任务、提供商和其他标准进行组织。在我花时间探索它之前,我一开始就是这么想的。事实上,Vertex AI Model Garden 不仅仅是一个最先进的模型的集合。本文将引导你参观 Vertex AI Model Garden。你将探索 Vertex AI Model Garden 的一些最相关功能及其使用方法。
原创
博文更新于 2024.10.30 ·
1058 阅读 ·
12 点赞 ·
0 评论 ·
28 收藏

15个最受欢迎的LLMOps工具

LLMOps 是一个新兴领域,专注于生产环境中大型语言模型的运营管理。它本质上是专门针对语言和其他多模态模型的 MLOps(机器学习操作)。LLMOps 涵盖大型语言模型的整个生命周期,包括数据收集、模型训练或微调、测试和验证、集成、部署、优化、监控和维护以及协作。通过构建项目和自动化流程,LLMOps 可帮助你减少错误并有效扩展 AI 应用程序,确保模型稳健并能够满足实际需求。
原创
博文更新于 2024.10.30 ·
2478 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

OpenAI Swarm:多智能体编排框架

多智能体框架的世界正在扩大,一个新的参与者刚刚加入:Swarm。它真的是新东西吗?嗯,是也不是。类似Swarms的多智能体框架:Phidata、Crewai和LangChain那么,什么是 Swarm?Swarm 来自 OpenAI Solutions 团队,旨在让使用多个 AI 智能体变得简单直观。。Swarm 的魔力在于简化使用大型语言模型实现代理行为的棘手过程。想想更少的大型提示、和更少的挣扎。
原创
博文更新于 2024.10.30 ·
2752 阅读 ·
31 点赞 ·
0 评论 ·
19 收藏

7个最受欢迎的AI智能体开发框架

在深入人工智能领域时,你经常会遇到称为“代理框架”的工具。这些软件库可帮助你构建可以自动执行任务的应用程序 - 将它们视为智能应用程序背后的大脑。今天,我将根据我的经验以及社区似乎喜欢的内容,回顾一些最受欢迎的代理框架。
原创
博文更新于 2024.10.30 ·
5301 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏
加载更多