flying_coder
码龄10年
求更新 关注
提问 私信
  • 博客:792,816
    社区:4,439
    问答:21,221
    动态:51
    818,527
    总访问量
  • 166
    原创
  • 374
    粉丝
  • 30
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2015-10-12

个人简介:graph representation learning、Anomaly Detection, Graph Prompt Learning, Graph Foundation Model

博客简介:

qwezhaohaihong

查看详细资料
个人成就
  • 获得677次点赞
  • 内容获得152次评论
  • 获得2,044次收藏
  • 代码片获得283次分享
  • 博客总排名1,552,509名
创作历程
  • 2篇
    2023年
  • 2篇
    2022年
  • 10篇
    2021年
  • 46篇
    2020年
  • 22篇
    2019年
  • 33篇
    2018年
  • 79篇
    2017年
  • 69篇
    2016年
  • 10篇
    2015年
成就勋章
TA的专栏
  • python
    15篇
  • pytorch
    6篇
  • GNN学习笔记
    35篇
  • 表示学习相关论文理解
    11篇
  • 统计学习方法
    6篇
  • 面向对象方法
    1篇
  • 形式语义学
    2篇
  • 人工智能原理
    2篇
  • com
    2篇
  • 可计算性与计算复杂性
    2篇
  • 代码优化
    6篇
  • 理解
    23篇
  • 数据结构C
    5篇
  • 数据结构C语言版
    8篇
  • 数据结构
    8篇
  • C++
    14篇
  • C#图像处理
    1篇
  • EmguCV
    2篇
  • Java
    28篇
  • 数据库
    22篇
  • Java EE
    28篇
  • RMI调用
    1篇
  • 设计模式
    4篇
  • Java;操作系统
  • opencv
    5篇
  • MAC OSX配置
    4篇
  • Machine Learning
    23篇
  • python数据处理
    10篇
  • Linux+anaconda3
    1篇
  • spark
    3篇
  • pyspark
    1篇
  • linux
    3篇
  • python2.6
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 1

兴趣领域 设置
  • 人工智能
    opencv机器学习深度学习神经网络pytorchnlp数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

GCN图卷积网络的理解.docx

发布资源 2020.06.30 ·
docx

面向对象方法课程内容背诵3.0.docx

发布资源 2020.09.12 ·
docx

关于 ivanti Access Client软件配置问题

ivanti client 连接问题
原创
博文更新于 2023.07.26 ·
4717 阅读 ·
2 点赞 ·
3 评论 ·
1 收藏

唐杰社会影响力.pptx

发布资源 2020.09.16 ·
pptx

Anaconda pytorch安装 问题记录 Solving environment: failed with initial frozen solve. Retrying with flexibl

Anaconda pytorch安装 问题记录 Solving environment: failed with initial frozen solve. Retrying with flexibl
原创
博文更新于 2023.05.05 ·
4382 阅读 ·
0 点赞 ·
2 评论 ·
3 收藏

Python zip()函数个人遇到的小问题——当输入的列表个数不固定的时候如何解决

Python zip()函数个人遇到的小问题——当输入的列表个数不固定的时候如何解决
原创
博文更新于 2022.07.09 ·
1052 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

WL-OA Kernel论文讲解——On Valid Optimal Assignment Kernels and Applications to Graph Classification

本资源详细分解了WL-OA Kernel中各个模块的定义,以及在图上的计算过程,包括论文中未提及的V-OA Kernel的计算过程的图示。最后,比较WL-OA Kernel和WL Kernel的区别,发现WL-Kernel的Hierarchy等结构的定义目的是为了说明相比于特征向量对应位置的值的乘积之和,特征向量对应之间取最小值之和能够保留标签类型变换的过程,进而更好的保留图结构信息。
原创
博文更新于 2022.04.21 ·
794 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

WL-OA Kernel个人理解注释以及论文的讲解PPT

发布资源 2022.04.21 ·
rar

个人Hierarchical softmax之CBOW推倒+知乎讲解.zip

发布资源 2020.07.27 ·
zip

形式语义学笔记zhh版.pdf

发布资源 2020.09.02 ·
pdf

word2vec词袋模型实现.zip

发布资源 2020.07.30 ·
zip

基于高斯过程的贝叶斯优化

因为目前来看,最常用的贝叶斯优化方法是基于高斯过程的,所以本篇blog主要记录基于高斯过程的贝叶斯优化方法的使用(不讲理论,不讲理论~)一、贴两个比较关键的基于高斯过程的贝叶斯优化包:1. BayesianOptimization ---https://github.com/fmfn/BayesianOptimization2. Botorch ---https://github.com/pytorch/botorch我个人更加推荐第一个,实现和修改起来更加的方便。二、关于贝叶斯..
原创
博文更新于 2021.09.03 ·
3307 阅读 ·
1 点赞 ·
0 评论 ·
18 收藏

VAE推导过程.docx

发布资源 2020.12.24 ·
docx

组件+COM+CORBA+EJB.docx

发布资源 2020.09.12 ·
docx

HttpServletRequest即很多代码中的request对象

javaweb学习总结(十)——HttpServletRequest对象(一)一、HttpServletRequest介绍  HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象提供的方法,可以获得客户端请求的所有信息。二、Request常用方法2.1、获得客户机信
转载
博文更新于 2021.04.21 ·
1619 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

如何引入先验知识——Embedding Symbolic Knowledge into Deep Networks——纯属个人思考,极有可能出错,自行取用

纯属个人思考,极有可能出错,自行取用一、Abstract:使用先验符号知识 -> 改善深度模型的效果如何使用先验符号知识:图表征网络——将命题公式转化到一个mainfold(空间)。得到了什么?具有语义可靠的表征(semantically-faithful embedding)——能够在学习的过程中,将命题公式的信息一并加入到模型中,使其获得一定根据规则判断的能力进一步的工作:阐明为什么这么做能够将知识编写与向量表示学习进行联系二、Introduction:目前的De.
原创
博文更新于 2021.04.05 ·
4056 阅读 ·
6 点赞 ·
1 评论 ·
15 收藏

MacOS_Catalina+Ubuntu教程.pdf

发布资源 2021.03.26 ·
pdf

Pytroch+DGL+模型设置相关总结

1、DGL部分: 当使用DGLGraph数据结构对原始数据进行解析的时候(从一条一条的数据变成一张一张图),首先要考虑的是如何将通过DGL库处理后的图数据存储,这时候需要用到的函数是dgl.load_graphs( )和dgl.save_graphs( graph list,label dict ),存储的文件后缀是.bin。此时,我们就将原始数据转换为了图数据,并得到后处理后的图数据集。此时要注意的是,使用pytorch进行训练,数据的读取需要使用到Dataloader类,Dataloade...
原创
博文更新于 2021.03.05 ·
1320 阅读 ·
4 点赞 ·
5 评论 ·
8 收藏

Deep Graph Library消息传递机制-Message Passing详解

首先是看一下dgl的官网:https://docs.dgl.ai/index.html里面的第二章https://docs.dgl.ai/guide/message.html#guide-message-passing,介绍了DGL数据结构的消息传递机制,这一机制便于我们去设计图神经网络,以及模型参数的传播。里面的三个核心的方法分别是message function、reduce function和update function,直接看官网给出来的式子不难理解,论文中的消息传递指的就是如何更
原创
博文更新于 2021.02.19 ·
1055 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

关于github的一些问题汇总

一、小白刚开始使用github的commit和push功能的时候肯定出现了,Push rejected: Push master to origin/master was rejected by remote这一类的错误,我们可以逐步的排出,a、首先是看自己的github远端的权限是否未开放,这种适用于团队或者小组开发的时候使用,如果你设置的是private类型的项目只要你通过token或者账号连接了github,那么正常来看肯定是可以push到远端的。为什么push不成功呢?首先检查一下当前项目下
原创
博文更新于 2021.02.03 ·
609 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多