在未来等你
码龄11年
求更新 关注
提问 私信
  • 博客:535,685
    社区:1
    535,686
    总访问量
  • 605
    原创
  • 5,281
    排名
  • 1,916
    粉丝
  • 179
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2014-10-23

个人简介:如果所有的付出都没有回报,那还让我怎么坚持

博客简介:

在未来等你的专栏

博客描述:
立即行动,不空想将来,做好每一个今天,才是最重要的
查看详细资料
个人成就
  • 获得8,219次点赞
  • 内容获得20次评论
  • 获得7,180次收藏
  • 代码片获得772次分享
  • 原力等级
    原力等级
    6
    原力分
    2,098
    本月获得
    7
创作历程
  • 448篇
    2025年
  • 28篇
    2020年
  • 36篇
    2019年
  • 1篇
    2018年
  • 85篇
    2015年
  • 10篇
    2014年
成就勋章
TA的专栏
  • JDK21深度解密
    付费
    15篇
  • AI Agent设计模式
    20篇
  • Java场景面试宝典
    121篇
  • Kafka面试精讲
    30篇
  • Elasticsearch面试精讲
    30篇
  • 智能Agent场景实战指南
    30篇
  • RabbitMQ面试专栏
    30篇
  • Redis面试专栏
    31篇
  • RAG实战指南
    30篇
  • 23种设计模式精讲
    23篇
  • 大模型应用开发
    12篇
  • JVM调优实战
    15篇
  • Java并发编程实战
    30篇
  • SQL进阶之旅
    30篇
  • 数据挖掘
    2篇
  • 水题
    17篇
  • 递归
    2篇
  • 贪心算法
    3篇
  • C#
    1篇
  • 搜索
    23篇
  • 背包问题
    2篇
  • 其他
    14篇
  • 数学
    4篇
  • 字符串训练
    32篇
  • JAVA
    54篇
  • 大数问题
    2篇
  • 杭电
    12篇
  • 动态规划
    1篇
  • 随笔
    31篇
  • 最短路径
    1篇
  • LeetCode
    33篇
  • 剑指offer
    13篇
  • 秋招
    7篇
  • 链表
    1篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 10

TA参与的活动 0

兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI Agent设计模式 Day 20:Hybrid模式:混合设计模式的最佳实践

Hybrid模式并非由单一论文提出,而是随着LLM Agent研究深入而自然演进的工程实践结晶。其核心思想源于模块化智能(Modular Intelligence)与分而治之(Divide and Conquer)原则:将复杂问题分解为子任务,为每个子任务分配最适合的设计模式,并通过统一协调机制实现整体最优。使用ReAct处理症状推理与检查调用;采用获取最新医学指南;引入根据医生反馈修正诊断逻辑;利用Multi-Agent协作分别扮演“问诊员”、“检验分析师”和“诊断专家”。
原创
博文更新于 2025.11.25 ·
702 阅读 ·
27 点赞 ·
0 评论 ·
19 收藏

AI Agent设计模式 Day 19:Feedback-Loop模式:反馈循环与自我优化

Agent在执行任务后,主动获取关于其行为结果的反馈信息,并基于此反馈更新自身策略、记忆、工具使用方式或推理逻辑,以在下一次类似任务中表现更优。该模式最早在强化学习(Reinforcement Learning)中被形式化,如Sutton & Barto (1998) 提出的策略梯度方法。近年来,在大语言模型(LLM)驱动的Agent系统中,Feedback-Loop被扩展为包含显式用户反馈(如评分、修正)、隐式行为信号(如点击率、停留时长)、环境奖励(任务完成度)以及自生成反思。
原创
博文更新于 2025.11.25 ·
1082 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

AI Agent设计模式 Day 18:Retrieval-Augmented模式:检索增强的知识整合

将参数化知识(LLM权重)与非参数化知识(外部文档库)解耦。传统LLM将所有知识压缩进参数中,而RAG则保留一个可更新、可审计、可解释的外部知识源。该模式的工作流程可概括为:用户提问 → 检索器从知识库中召回相关文档 → 将文档与问题拼接为提示 → LLM生成基于证据的答案RAG不仅提升了事实准确性,还显著降低了幻觉率。Meta、Google、Microsoft等公司已将其作为企业知识问答系统的标准架构。
原创
博文更新于 2025.11.24 ·
609 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

AI Agent设计模式 Day 17:Tool-Augmented模式:工具增强的能力扩展

Tool-Augmented模式最早可追溯至2017年Google提出的“Program-Aided Language Models”(PAL)思想,并在2022年Meta的Toolformer和2023年LangChain生态中得到广泛实践。将LLM作为“控制器”,而非“执行器”。模型不再直接生成最终答案,而是生成对工具的调用指令(如函数名+参数),由外部工具执行后返回结果,再由模型整合输出。缺乏实时数据:无法访问互联网或私有数据库;计算精度不足:无法进行高精度数学运算;无副作用操作能力。
原创
博文更新于 2025.11.24 ·
1015 阅读 ·
23 点赞 ·
0 评论 ·
27 收藏

AI Agent设计模式 Day 16:Memory-Augmented模式:记忆增强的Agent设计

Memory-Augmented模式的核心思想是将Agent的推理能力与其记忆系统解耦,通过外部可读写的记忆存储(而非仅依赖LLM内部上下文窗口)实现长期知识积累与复用。该模式源于2014年DeepMind提出的神经图灵机(Neural Turing Machine, NTM)和可微分神经计算机(Differentiable Neural Computer, DNC),其关键突破在于引入了外部记忆矩阵$M \in \mathbb{R}^{N \times M}$,并通过注意力机制实现对记忆的读写操作。
原创
博文更新于 2025.11.22 ·
1022 阅读 ·
30 点赞 ·
0 评论 ·
16 收藏

AI Agent设计模式 Day 15:Swarm模式:群体智能与涌现行为

Swarm模式源于群体智能(Swarm Intelligence, SI)理论,最早由Bonabeau等人在1999年系统提出,其灵感来自蚂蚁觅食、鸟群飞行等自然现象。在AI Agent系统中,Swarm模式指由多个同构或异构的轻量级Agent组成群体,每个Agent仅依据局部环境信息和简单规则进行决策,通过信息素(pheromone-like signals)、消息广播或状态共享等方式间接通信,最终在整体层面涌现出复杂、高效的智能行为。去中心化:无单一控制节点,系统具有高容错性;自组织。
原创
博文更新于 2025.11.22 ·
935 阅读 ·
28 点赞 ·
0 评论 ·
13 收藏

AI Agent设计模式 Day 14:Hierarchical模式:分层Agent架构设计

Hierarchical模式源于经典人工智能中的分层任务网络(Hierarchical Task Network, HTN)规划方法,最早由Sacerdoti在1970年代提出,并在SOAR、SHOP等规划系统中得到广泛应用。将复杂任务递归分解为子任务,并由不同层级的Agent协同完成,高层Agent负责目标分解与监控,低层Agent专注具体执行。任务分解(Task Decomposition):高层Agent将宏观目标拆解为可操作的子任务。职责分离(Separation of Concerns)
原创
博文更新于 2025.11.22 ·
1172 阅读 ·
38 点赞 ·
0 评论 ·
20 收藏

AI Agent设计模式 Day 13:Ensemble模式:集成多个Agent的智慧

Ensemble模式源于统计学与机器学习中的集成方法(Ensemble Methods),最早可追溯至1990年代Breiman提出的Bagging和Freund & Schapire的AdaBoost算法。通过协调多个具有不同能力、视角或偏好的Agent,对其输出进行融合,以获得比任一单个Agent更准确、更稳健的结果。多样性(Diversity):参与集成的Agent应在能力、训练数据、提示模板、工具链或推理路径上存在差异。互补性(Complementarity)
原创
博文更新于 2025.11.22 ·
880 阅读 ·
13 点赞 ·
0 评论 ·
30 收藏

AI Agent设计模式 Day 12:Debate模式:多Agent辩论与决策优化

Debate模式源于博弈论与群体智能理论,其思想可追溯至哲学中的苏格拉底式诘问法(Socratic Method)和人工智能领域的多智能体协商机制。2023年,OpenAI在论文《》及后续工作中首次系统性地将多Agent辩论机制应用于大模型推理优化。单一Agent容易陷入局部最优或认知偏见,而多个具备差异化视角的Agent通过结构化辩论可逼近全局最优解。正方Agent(Proponent):支持某一结论或方案反方Agent(Opponent):提出反对意见或替代方案。
原创
博文更新于 2025.11.19 ·
1298 阅读 ·
20 点赞 ·
0 评论 ·
18 收藏

AI Agent设计模式 Day 11:Multi-Agent协作模式:角色分工与任务协同

Multi-Agent协作模式源于分布式人工智能(Distributed Artificial Intelligence, DAI)和多智能体系统(Multi-Agent Systems, MAS)的研究传统。早在20世纪90年代,Jennings等人就在《Artificial Intelligence》期刊中提出:“智能不应局限于单个实体,而应通过多个自主、交互的代理共同涌现。
原创
博文更新于 2025.11.19 ·
1176 阅读 ·
21 点赞 ·
0 评论 ·
25 收藏

AI Agent设计模式 Day 10:Analogical Reasoning模式:类比推理实战

Analogical Reasoning(类比推理)是指通过识别源域(source domain)与目标域(target domain)之间的结构映射关系,将源域的知识、解决方案或行为模式迁移到目标域的过程。其核心思想源于认知科学中的结构映射理论(Structure Mapping Theory),由Dedre Gentner于1983年提出。
原创
博文更新于 2025.11.18 ·
389 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

AI Agent设计模式 Day 9:Least-to-Most模式:从简单到复杂的渐进式推理

Least-to-Most(LtM)是一种渐进式提示(Progressive Prompting)设计模式,专为提升大语言模型(LLM)在复杂推理任务中的表现而设计。不直接要求模型解决整个复杂问题,而是引导其先将问题分解为逻辑上递进的子问题序列,再按顺序逐一解答,后一个子问题的答案依赖于前一个子问题的输出。该模式由Google Research团队于2022年首次提出,旨在解决传统Zero-shot或Few-shot提示在面对多步骤、强依赖性任务时表现不佳的问题。
原创
博文更新于 2025.11.18 ·
350 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

AI Agent设计模式 Day 8:Graph-of-Thoughts模式:图结构推理网络

Graph-of-Thoughts(GoT)由Yao et al. 在2023年提出(论文《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》),是对Chain-of-Thought(CoT)和Tree-of-Thoughts(ToT)的进一步泛化。将推理过程建模为一个有向图(Directed Graph),其中节点表示中间思想(Thoughts),边表示推理操作(Operations)。
原创
博文更新于 2025.11.18 ·
899 阅读 ·
22 点赞 ·
1 评论 ·
19 收藏

AI Agent设计模式 Day 7:Tree-of-Thoughts模式:树形思维探索

是由普林斯顿大学与谷歌DeepMind于2023年提出的创新性推理框架,其核心思想是将问题求解过程建模为一棵动态生长的思维树(Thought Tree),每个节点代表一个中间推理状态(partial solution),每条边代表一次推理步骤。与Chain-of-Thought(CoT)仅维护单一推理链不同,ToT允许Agent同时维护多个候选路径,并通过评估函数(Value Function)对各路径进行打分,结合搜索策略(如BFS、DFS、Beam Search)动态剪枝或扩展最有希望的分支。原始论文。
原创
博文更新于 2025.11.17 ·
1079 阅读 ·
16 点赞 ·
0 评论 ·
24 收藏

AI Agent设计模式 Day 5:Reflexion模式:自我反思与持续改进

Reflexion 模式由 Shinn 等人在 2023 年提出的论文《Reflexion: Language Agents with Verbal Reinforcement Learning》首次系统阐述。让语言模型在完成任务后,像人类一样“复盘”,通过自我批评生成反思日志(reflection memory),并在下一次尝试中利用这些经验优化决策路径。与传统的单次推理不同,Reflexion 引入了迭代-反思-再执行执行阶段:Agent 执行任务并输出结果。评估阶段。
原创
博文更新于 2025.11.10 ·
474 阅读 ·
11 点赞 ·
0 评论 ·
9 收藏

AI Agent设计模式 Day 6:Chain-of-Thought模式:思维链推理详解

Chain-of-Thought(思维链)模式由 Wei 等人在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》(NeurIPS 2022)中正式定义。在提示(prompt)中要求模型不仅给出答案,还要展示得出答案的推理过程。例如,对于问题:“小明有5个苹果,吃了2个,又买了3个,现在有几个?”,传统输出为“6”,而CoT输出为:“小明开始有5个苹果。吃了2个后剩下 5 - 2 = 3 个。
原创
博文更新于 2025.11.10 ·
611 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

AI Agent设计模式 Day 4:ReWOO模式:推理而不观察的高效模式

ReWOO(Reasoning without Observation)是一种将逻辑推理与环境交互分离的Agent设计模式。传统ReAct模式在每一步推理后立即调用工具并观察结果,导致大量中间Token被用于记录观察内容,不仅增加成本,还可能因上下文过长引发信息丢失。Plan阶段:LLM仅基于任务描述生成一个结构化的推理计划(Plan),其中包含一系列待执行的工具调用指令(如),但不实际执行。Execute阶段:系统解析Plan,并行或顺序执行所有工具调用,获取真实世界数据(Observations)。
原创
博文更新于 2025.11.08 ·
722 阅读 ·
24 点赞 ·
0 评论 ·
24 收藏

AI Agent设计模式 Day 3:Self-Ask模式:自我提问驱动的推理链

Self-Ask模式最早由Google Research团队在2022年论文《》中正式提出。其核心思想源于人类解决问题时的“元认知”策略:面对复杂问题,人们会本能地将其拆解为若干中间问题,逐一解答后再整合答案。定义:Self-Ask是一种基于显式中间问题生成的推理范式,其中LLM在回答主问题前,首先判断是否需要提出一个或多个后续问题(follow-up questions),并通过迭代式问答逐步逼近最终答案。该模式的关键创新在于强制模型暴露其推理过程,而非直接输出结论。
原创
博文更新于 2025.11.08 ·
896 阅读 ·
29 点赞 ·
0 评论 ·
23 收藏

AI Agent设计模式 Day 2:Plan-and-Execute模式:先规划后执行的智能策略

Plan-and-Execute 模式源于传统人工智能中的分层任务网络(Hierarchical Task Network, HTN)规划和STRIPS 规划框架先由一个“规划器”(Planner)生成完整的任务分解计划,再由“执行器”(Executor)按计划逐步调用工具或采取行动。
原创
博文更新于 2025.11.07 ·
1333 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

AI Agent设计模式 Day 1:ReAct模式:推理与行动的完美结合

ReAct(Reasoning + Acting)是一种将符号推理与环境交互融合的Agent设计模式。其灵感来源于人类解决问题的过程:我们不仅会思考“怎么做”,还会执行动作(如搜索、点击、计算),并根据结果调整下一步策略。原始论文指出,仅使用CoT的模型在需要外部知识的任务上表现不佳(如HotpotQA准确率仅43%),而纯工具调用又容易因缺乏上下文理解导致错误操作。ReAct通过引入交替的Thought-Action-Observation序列。
原创
博文更新于 2025.11.07 ·
1049 阅读 ·
15 点赞 ·
0 评论 ·
8 收藏
加载更多