式516
码龄5年
求更新 关注
提问 私信
  • 博客:10,471
    10,471
    总访问量
  • 30
    原创
  • 1
    粉丝
  • 71
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2021-03-14
博客简介:

qq_56095294的博客

查看详细资料
个人成就
  • 获得168次点赞
  • 内容获得0次评论
  • 获得150次收藏
  • 博客总排名55,480名
  • 原力等级
    原力等级
    3
    原力分
    67
    本月获得
    171
创作历程
  • 30篇
    2025年
成就勋章

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • Python
    ipython
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

python编程实战(四)

遍历时,只要碰到边界,那么(dx,dy)=(dy,-dx),如(0,1)->(1,0)。注意这里y对应的是矩阵中的列,所以(0,1)表示的方向是右。题目实际上是要求按某个方向遍历矩阵中所有元素,这个方向在遇到边界时将顺时针旋转九十度,这个方向可以用向量(dx,dy)表示。如果右上角的元素不是目标元素,那么如果大于目标元素,更新列数,向左边的列寻找;由于矩阵的特性,所以右边的元素一定大于左边的元素,下边的元素一定大于上边的元素;将矩阵原地旋转九十度,可以先将矩阵转置,再把偶数列对应的元素互换。
原创
博文更新于 16 小时前 ·
748 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

线性代数(九)线性相关性、基与维数

推广到m*n的情况,如果矩阵有n列,rank=r,则矩阵的零空间的维度等于方程Ax=0的自由变量的个数、基础解系的个数n-r。反之,如果矩阵的零空间中不仅仅存在零向量,这意味着可以通过线性组合将其列向量组合成零向量,也即这些向量线性相关。空间的一组基,基向量的个数就是张成的空间的维度,一个空间内可以有很多组基,但每组基所包含的向量的个数一定是相等的,为N。显然,矩阵的列空间的维度和零空间的维度具有对称关系,列空间的维度为rank,而零空间的维度为n-rank。,容易看出,该矩阵的列空间的一组基为。
原创
博文更新于 前天 22:39 ·
172 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

大模型学习基础(六) 强化学习(Reinforcement Learning,RL)初步1.3

而G1’表示的是在状态s1采取动作a1之后再执行一系列动作以后得到的reward的累计值,G1’的值是有随机性的,因为actor在执行a1后的动作并不一定是固定的,所以用G1’-V(s1)实际上是用动作的平均优势值对单个动作的优势值进行了标准化,从而衡量单个动作的好坏。由于actor并没有进行完所有的action,所以G1和G2的具体值都是不知道的,但我们知道G1和G2之间是有关系的,G1=nG2+r1,所以G1-nG2=r1,所以V(s1)-nV(s2)应该近似于r1。训练critic的方式有两种。
原创
博文更新于 前天 11:57 ·
130 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

线性代数(八)非齐次方程组的解的结构

如b的维度必然等于m,而线性无关的列向量数目为m,因此m个线性无关的列向量必然可以找到组合出m维的b的方法)。列满秩意味着所有列都是主列,不存在自由元,此时零空间只有零向量,则方程组的解只有特解,且特解仅有一个;进一步探讨方程组有解的条件,由之前的知识可知,b向量必须是A的列向量空间的子空间,方程组才有解;两组齐次方程组的基础解系加上一个非齐次方程组的特解,构成非齐次方程组的所有解(这里有一个有趣的问题,为什么非齐次方程组的解只需要一个特解呢?如果m=n,即m=r=n,系数矩阵A可逆,矩阵必然有唯一解。
原创
博文更新于 2025.12.17 ·
312 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

大模型学习基础(六) 强化学习(Reinforcement Learning,RL)初步1.2

上述例子中,actor每和environment互动一次,产生一组{s,a},然后再计算价值函数A,接着计算出损失函数,更新actor的参数;这意味着actor每次用来的训练的数据都是它自己产生的。另外一个问题是,如果简单的用r来作为A的数值,会有一个问题,就是只有在做固定的action时A才会增加,这会导致actor只会选择固定的action,实际上的RL对A的定义有多种方法。可能存在一种情况,即所有的action对应的A都是大于零的,这样actor将会认为所有的action都是好的,这显然不对;
原创
博文更新于 2025.12.17 ·
310 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

python编程实战(三)

除nums[i]元素之外的元素乘积可以分为两部分,nums[i]之前的元素的乘积和nums[i]之后的元素的乘积;将数组num正向遍历一遍之后,可以再反向遍历一遍,然后用一个数组先存储前元素乘积,再存储后元素乘积。原地哈希算法,我们希望在位置i上的值是i+1,如在位置0上的位置是1,这样可以起到高效的排序效果;使用双循环遍历矩阵每个元素,如果某个元素为0,将其对应的行、列通过布尔值打上标记;的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0。,请你找出其中没有出现的最小的正整数。
原创
博文更新于 2025.12.17 ·
492 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

线性代数(七)主变量与特解

其中I为二阶单位阵,F为自由列,不难注意到,F中的相反数构成了主元的解(课程中把这样形式的矩阵加做行最简矩阵,但国内的教材定义行最简矩阵并不要求把主列放在相邻的位置)。,对系数矩阵初等行变换时要同时对右侧的零向量进行变换,这等价于用一个结果为0的方程减去另一个结果为0的方程,显然结果仍然为0,那么解同样属于0空间。,I为r阶,R为n阶,则矩阵R表示有r个主元、r个主列、n-r个自由元、自由列。重新设定自由元的值,x2=0,x4=1,容易求出x1=2,x3=-2。,显然这个解可以张成一个子空间,即。
原创
博文更新于 2025.12.16 ·
159 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

python编程实战(二)

任意一个连续子数组,都是以nums中的某个元素num[i]结尾,用dp[i]表示以nums[i]元素结尾的数组。如果dp[i-1]>0,会让nums[i]变大;反之如果是负数只会让nums[i]变小,不如从nums[i]重新开始。dp[i]可以通过递归思想来表示,即dp[i]=dp[i-1]+nums[i](i>1);然后分割为[6,5][4,3,2,1]分别翻转,得到[5,6,1,2,3,4],即所要求的结果。如[1,2,3,4,5,6]向右轮转2个位置,可以先把数组翻转:[6,5,4,3,2,1]
原创
博文更新于 2025.12.15 ·
574 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

线性代数(六)列空间和零空间

显然我们可以给定x,来组合出b,这样是一定有解的,这等价于说当b向量是A中列向量的线性组合时,方程有解;2.P和L的交集,能构成子空间吗?P空间和L空间的交集上的向量进行线性组合,结果一定还在这个交集上。显然不能,因为P空间内的向量和L空间内的向量进行线性组合,结果未必都在P和L上。,方程左侧可以看成对三个列向量进行任意线性组合,显然这种线性组合无法囊括整个思维空间,因此该方程并不是总有解。空间的子空间,该子空间实际上是一条直线,且该空间满足对向量的数乘封闭和加法封闭。空间的子空间,称之为A的列向量空间。
原创
博文更新于 2025.12.14 ·
336 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

大模型学习基础(五) 强化学习(Reinforcement Learning,RL)初步

前面的文章简单介绍过,传统的监督学习所使用的数据集是(特征,标签),有“标签”即明确的知晓正确的输出应该是什么。而实际的情况是,环境的状态S是由多个Si构成的,每训练一组S-a即训练一个多分类问题,把这些问题的损失函数(交叉熵)加在一起,即可训练出在不同的状态下应该使用什么动作。模型在选择一个动作之后,这个动作实际是对Environment发生,相应的Environment会给模型一个回馈Reward,然后再给模型一个新的Observation,模型继续选择新的动作,循环此过程。
原创
博文更新于 2025.12.13 ·
405 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

线性代数(五)向量空间与子空间

第一象限中的所有坐标都是正坐标,对应的所有向量都是正向量,这些向量相互做加法得到的向量显然还是位于第一象限,所以第一象限是满足对向量加法封闭的;但是如果用0乘一个第一象限中的向量,得到的将是0向量,即原点,而我们已经定义原点不在第一象限上,所以第一象限不满足对于向量数乘封闭。显而易见,y=x上的所有点对应的向量满足对向量加法和数乘封闭,所以这条直线是可以构成子空间的。,这是一个三维向量空间,其内部的所有向量都是三维的;同样的,对于这个空间内部的向量,必须满足这些向量的所有线性组合全部位于。
原创
博文更新于 2025.12.13 ·
440 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

线性代数(四)矩阵的LU分解

矩阵的LU分解的意义在于:直接对矩阵A进行高斯消元,计算次数会较为繁多,在矩阵为N阶并且有多组不同的b时,将其分解为LU形式,将会大大减小矩阵运算的时间复杂度。一个矩阵可以分解为下三角矩阵(L)乘上三角矩阵(U)(主对角线以下元素都是0)
原创
博文更新于 2025.12.11 ·
163 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

python编程实战(一)

在该题目中,首先统计t中的每个字符出现的次数,然后遍历整个s,左、右指针从0开始,右指针逐个向右滑动。当窗口中的字符串中的字符数量与t中的字符串中的字符数量相等时,代表着找到了一个候选窗口,然后移动左指针收缩,此时窗口内的字符数量与t中不再相等,开始新的一轮寻找。Counter()函数,输入一个字符串,可以自动生产哈希表,键为字符,值为字符出现次数。最小覆盖子串 "BANC" 包含来自字符串 t 的 'A'、'B' 和 'C'。中的每一个字符(包括重复字符)。,返回 s 中的最短窗口子串,使得该子串包含。
原创
博文更新于 2025.12.11 ·
150 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

大模型学习基础(四) Transformer架构 下

首先将begin向量作为Mask Self-attention层的输入,得到第一个输出向量,计算该向量的q向量,利用self-attention中的k、v向量生成机制计算出Encoder每个输出向量的k、v向量,将其组合产生输出向量,通过全链接神经网络,最终得到一个输出词;将这个输出词作为新的输入交给Mask Self-attention层,计算和之前的所有输入向量的相关度继续得到新的输出,然后继续和Encoder的输出进行self-attention操作,然后循环此操作。,在第一个输出向量中,
原创
博文更新于 2025.12.10 ·
363 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏

线性代数(三)矩阵乘法扩展与若尔当-高斯消元

矩阵A、B,其可做乘法的前提是矩阵A的列数等于矩阵B的行数。在此条件下,矩阵乘法有5种等价形式。
原创
博文更新于 2025.12.09 ·
433 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

大模型学习基础(三) Transformer架构 上

输入inputs,对其进行嵌入(嵌入操作,简单理解即把输入文本转化成向量,以便计算机进行处理操作),再加上位置编码,进行Multi-Head Attention(多头自注意力)操作,进行残差链接和归一化操作,通过神经网络,再进行一次残差链接和归一化,得到输出。得到a+b后,还要对其进行归一化操作:先对a+b向量求矩阵、标准差,然后对每个向量中的每个元素进行归一化操作。归一化操作之后,将归一化结果经过全连接神经网络,再进行一次残差链接处理,然后再进行一次归一化操作,最终得到一个block的输出。
原创
博文更新于 2025.12.08 ·
144 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

线性代数(二)高斯消元法与矩阵乘

我们可以看出,逆矩阵在进行乘法作用时可以抵消其原矩阵的效果,但并不是所有矩阵都有可逆矩阵,即并非所有矩阵操作都是可以抵消的。,稍微有一些线性代数基础的朋友都知道,对矩阵消元可以利用行变换来操作,对于矩阵A来说,可以使第二行减去3倍的第一行,得到。最右边的矩阵的第一列可以看成0倍的第一列加1倍的第二列,第二列可以看成零倍的第二列加1倍的第一列,那么不难想到,,左边的矩阵通过乘矩阵C,来进行相应的列变换,得到右边的矩阵,矩阵C该是什么样子呢?很简单,把对应的行操作抵消就好,可以给T左乘矩阵。
原创
博文更新于 2025.12.08 ·
322 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

大模型学习基础(三) self-attention机制

一般情况下的神经网络学习模式,某个输出向量y的分量y1其仅仅取决于输入向量x的分量x1,而在NLP场景下,这显然并不合适。显然,对于机器来说,第一个单词saw和第二个单词saw的输入特征向量是完全一样的,因此机器处理这两个单词之后的输出也是一致的;到这里已经不难看出了,我们有了每个分量和其他分量之间的相关性概率,又有了每个分量所含的信息,显然只要把信息和概率做乘法再累加,输出的新分量就是结合了上下文之后的输出,q向量表示当前分量的需求,k向量表示其他分量的特征,其中,向量的其他分量的结合上下文的输出结果。
原创
博文更新于 2025.12.07 ·
1169 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

线性代数(一)矩阵的意义

但是如果矩阵A是奇异矩阵,比如三个列向量处于同一个平面,显然这三个向量无论怎么组合都只能组合出在该平面上的向量,而绝对无法表示笛卡尔系中的所有向量,此时对于某些b,不存在对应的x(或只有两个列向量处于同一个平面,那么也会有某些平面的向量无法被线性组合出来)。从行向量的角度审视,显然方程一、二对应平面直角坐标系的两条直线,而两条直线的交点,对应的就是方程组的解,由于这是两个二元一次方程组,显然解只有一个,并且对应图中的交点,不难求出,该点坐标是:(1,2)。显然,当且仅当在x=1,y=2时,该组合成立。
原创
博文更新于 2025.12.06 ·
842 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

深度学习TensorFlow架构学习(五)卷积1.1 卷积运算与感受野

在上述例子中,用3*3卷积核进行两次操作和用5*5卷积核进行一次操作得到的都是1*1的像素点,换言之经过两种卷积核运算之后该像素点的感受野都为5,那么这两种卷积运算的提取能力其实是一样的,即进行一次5*5卷积核卷积运算和进行两次3*3卷积核卷积运算对于5*5的特征图的提取能力是相同的。如输入特征图为RGB三色空间图,通道数为3,那么对应的卷积核通道也应该是3。如果对这个3*3的输出特征图继续用同样的卷积核进行同样的操作,将输出一个1*1的像素点,该点对应的原始特征图的大小为5*5,则该像素点的感受野为5。
原创
博文更新于 2025.12.04 ·
316 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多