Vous oublie@
码龄5年
求更新 关注
提问 私信
  • 博客:406,587
    社区:23
    问答:462
    动态:2,696
    409,768
    总访问量
  • 95
    原创
  • 3,216
    粉丝
  • 120
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
加入CSDN时间: 2020-12-26

个人简介:热爱

博客简介:

qq_54000767的博客

查看详细资料
个人成就
  • 获得429次点赞
  • 内容获得59次评论
  • 获得1,456次收藏
  • 代码片获得11,498次分享
  • 博客总排名1,205,699名
创作历程
  • 5篇
    2024年
  • 48篇
    2023年
  • 41篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • java
    16篇
  • java后端
    20篇
  • 虚拟机
    5篇
  • C语言程序设计
    8篇
  • python学习
    28篇
  • 图像处理
    5篇
  • 工具
    2篇
  • chatgpt
    1篇
  • 数据分析
    4篇
  • python bug
    13篇
  • 网页
    4篇
  • eclipse
    11篇
  • 算法设计与分析
    2篇
  • 卷积神经网络
    1篇
  • 数学建模
    1篇
  • SQL Server
    6篇
  • 微信小程序制作
    1篇
  • 计算机考试基础
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 3

兴趣领域 设置
  • Python
    python
  • 人工智能
    数据挖掘人工智能
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

29人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

IDEA关闭git管理,文件变成红色

在一个文件夹内部,往往会涵盖多个 Java 项目。倘若其中的某一个项目启动了 Git 版本控制系统,那么此文件夹中的所有项目均会随之开启 Git ,且其中的相关文件会呈现出红色标识。
原创
博文更新于 2024.08.13 ·
1628 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

IDEA 报错,无效的源发行版 无效的目标发行版:22

IDEA 报错,无效的源发行版 无效的目标发行版:22
原创
博文更新于 2024.08.13 ·
2788 阅读 ·
5 点赞 ·
1 评论 ·
10 收藏

java: 无法访问org.springframework.boot.SpringApplication 错误的类文件,类文件具有错误的版本 61.0, 应为 52.0 请删除该文件或确保

java: 无法访问org.springframework.boot.SpringApplication 错误的类文件,类文件具有错误的版本 61.0, 应为 52.0 请删除该文件或确保改文件位于正确的类路径子目录中
原创
博文更新于 2024.08.13 ·
783 阅读 ·
12 点赞 ·
1 评论 ·
4 收藏

Dbeaver连接Clickhouse失败!

发布问题 2024.08.09 ·
1 回答

Xshell连接clickhouse出现“WARNINGThe remote SSH server rejected X11 forwarding request.“警告

Xshell连接clickhouse出现“WARNINGThe remote SSH server rejected X11 forwarding request.“警告
原创
博文更新于 2024.08.08 ·
1285 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

Centos 7 yum下载时出现报错Could not retrieve mirrorlist http://mirrorlist.centos.org/?release=7&arch=x86_64

Centos 7 yum下载时出现报错Could not retrieve mirrorlist http://mirrorlist.centos.org/?release=7&arch=x86_64&repo=os&infra=stock error was14: curl#6 - "Could not resolve host: mirrorlist.centos.org; 未知的错误"
原创
博文更新于 2024.08.08 ·
6490 阅读 ·
68 点赞 ·
7 评论 ·
105 收藏

深度解析 InterpretML:打开机器学习模型的黑箱

机器学习模型的高性能往往伴随着模型的复杂性,这使得模型的决策过程变得不透明,难以理解。在这个背景下,可解释性机器学习成为了一个备受关注的领域。本文将介绍 InterpretML,一个强大的可解释性机器学习框架,帮助我们更好地理解和解释模型。
原创
博文更新于 2023.11.18 ·
1000 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

解读可解释性机器学习:理解解释性基准模型(EBM)

近年来,随着机器学习模型的复杂性不断增加,研究人员和从业者对模型的可解释性提出了更高的要求。可解释性机器学习(Explainable Machine Learning, XAI)成为了一个备受关注的研究领域,旨在提高模型的透明度,以便更好地理解模型的决策过程。在众多可解释性方法中,解释性基准模型(Explainable Boosting Machine, EBM)凭借其独特的优势逐渐崭露头角。
原创
博文更新于 2023.11.18 ·
3179 阅读 ·
2 点赞 ·
1 评论 ·
6 收藏

编写程序,要求输入x的值,输出y的值。分别用(1)不嵌套的if语句(2)嵌套的if语句(3)if-else语句(4)switch语句。

编写程序,要求输入x的值,输出y的值。分别用(1)不嵌套的if语句(2)嵌套的if语句(3)if-else语句(4)switch语句。
原创
博文更新于 2023.11.18 ·
3684 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

Vue.js :实现嵌套对话框的查看按钮

Vue.js 是一款流行的 JavaScript 框架,用于构建交互性强、响应式的前端应用程序。本博客将介绍如何使用 Vue.js 和 Element UI 库创建一个前端应用,其中包括了嵌套对话框的查看按钮,以及如何在嵌套对话框中隐藏关闭按钮
原创
博文更新于 2023.09.22 ·
604 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

解决Git推送错误:Updates were rejected的完整指南

在使用Git进行协作开发或管理代码版本时,你可能会遇到 “Updates were rejected” 错误。这个错误通常发生在你尝试将本地更改推送到远程Git仓库时,而远程仓库已经包含了你没有的本地更改。本篇博客将帮助你理解这个错误的原因以及如何解决它。
原创
博文更新于 2023.09.22 ·
25637 阅读 ·
10 点赞 ·
1 评论 ·
29 收藏

Vue 3前端开发:患者信息查询页面

在医院管理系统中,患者信息查询是门诊医生工作的一项重要任务。在本文中,我们将使用Vue 3框架创建一个简单的患者信息查询页面,用户可以输入患者姓名,然后查询其病历信息。
原创
博文更新于 2023.09.22 ·
1077 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

C语言中的条件运算符和标识符

通过本文的介绍,你已经了解了C语言中条件运算符和标识符的基本知识。条件运算符可以使你的代码更加简洁,标识符的合理命名则有助于代码的可读性和维护性。同时,你还学会了`while`和`do while`循环的区别,以及如何在实际编程中使用它们。
原创
博文更新于 2023.07.24 ·
596 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

C语言strcpy()函数详解与例题练习

在C语言程序设计中,strcpy()函数是一个重要的字符串操作函数,用于将一个字符串复制到另一个字符串中。本篇博客将详细介绍strcpy()函数的用法和注意事项,并通过例题练习加深对该函数的理解。
原创
博文更新于 2023.07.20 ·
2973 阅读 ·
2 点赞 ·
1 评论 ·
6 收藏

使用Python提取和筛选Word文档中的句子

在Python编程中,我们经常需要处理文本数据。本篇博客将介绍如何使用Python读取Word文档,并提取其中包含特定关键词的句子。我们还将展示如何对提取出的句子进行筛选,例如根据句子的长度或特定字符的出现进行过滤。
原创
博文更新于 2023.06.04 ·
2688 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

U-Net结合GAN模型训练

在计算机视觉任务中,U-Net是一种常用的用于图像分割的深度学习模型。它具有U字型的网络结构,能够有效地捕捉图像的上下文信息并生成精确的分割结果。然而,为了进一步提高分割的质量和细节,我们可以将U-Net与GAN(生成对抗网络)结合起来。
原创
博文更新于 2023.06.02 ·
5251 阅读 ·
6 点赞 ·
4 评论 ·
30 收藏

继续努力!!!

发布动态 2023.06.02

r语言程序实现 随机游动轨道

答:

# 安装并加载所需的包
install.packages("ggplot2")  # 如果未安装ggplot2包,请先安装
library(ggplot2)

# 设置模拟参数
num_points <- 100  # 轨迹点的数量
num_trajectories <- 5  # 轨迹的数量

# 创建空的数据框用于存储轨迹数据
data <- data.frame(x = numeric(num_points),
                   y = numeric(num_points),
                   trajectory = factor(rep(1:num_trajectories, each = num_points)))

# 模拟随机游动轨迹
set.seed(123)  # 设置随机数种子,以便结果可复现
for (i in 1:num_trajectories) {
  # 初始化每条轨迹的起始点
  x <- 0
  y <- 0
  
  # 模拟轨迹点
  for (j in 1:num_points) {
    x <- x + rnorm(1)  # 在x方向上随机游动
    y <- y + rnorm(1)  # 在y方向上随机游动
    data[(i - 1) * num_points + j, ] <- c(x, y, i)  # 存储轨迹点的坐标和对应的轨迹编号
  }
}

# 绘制轨迹图
ggplot(data, aes(x = x, y = y, color = trajectory)) +
  geom_path() +
  theme_minimal()

运行上述代码后,将会生成一张包含五条随机游动轨迹的图形。每条轨迹使用不同的颜色进行标识。你可以根据需要调整num_points和num_trajectories参数来控制轨迹点的数量和轨迹的数量。如果你未安装ggplot2包,请先运行install.packages("ggplot2")进行安装。

回答问题 2023.05.28

c++用什么可以刷内存

答:
  1. memcpy:使用memcpy函数可以实现内存块之间的快速拷贝。你可以使用memcpy将一个内存块的内容复制到另一个内存块,以实现快速的内存刷写操作。
#include <cstring>

// 示例代码:将src指向的内存块复制到dest指向的内存块
void fastMemoryWrite(void* dest, const void* src, size_t size)
{
    memcpy(dest, src, size);
}


2.使用SIMD指令集:在支持SIMD(单指令多数据)指令集的平台上,可以使用SIMD指令来进行并行的内存操作,从而提高内存刷写速度。例如,使用Intel的SSE(Streaming SIMD Extensions)指令集或者ARM的NEON指令集可以加速内存操作。

// 示例代码:使用SSE指令进行快速的内存刷写
#include <emmintrin.h>

void fastMemoryWrite(float* dest, float value, size_t size)
{
    __m128 valueVector = _mm_set_ps1(value); // 将value复制到SSE寄存器中的四个元素
    size_t numIterations = size / 4; // 每次处理四个元素

    for (size_t i = 0; i < numIterations; ++i)
    {
        _mm_store_ps(dest + i * 4, valueVector); // 使用SSE指令一次性写入四个元素
    }
}


回答问题 2023.05.28

MATLAB云模型船舶航路识别

答:
  • 加载船舶航行轨迹密集图:首先,将船舶航行轨迹密集图加载到MATLAB中。你可以使用imread函数加载图像文件,或者直接使用已加载的图像变量。
image = imread('航行轨迹图.jpg');


  • 转换为HSV颜色空间:将图像从RGB颜色空间转换为HSV颜色空间。HSV颜色空间对于颜色的描述更加直观,其中H表示色调,S表示饱和度,V表示亮度。
hsvImage = rgb2hsv(image);


  • 提取颜色区域:根据你想要提取的颜色范围,在HSV图像中创建一个二值掩码,将指定颜色区域设置为白色(1),其余区域设置为黑色(0)。你可以使用imbinarize函数结合阈值来创建二值掩码。
hueThreshold = [0 0.1]; % 设置色调阈值范围
saturationThreshold = [0 1]; % 设置饱和度阈值范围
valueThreshold = [0 1]; % 设置亮度阈值范围

hueMask = (hsvImage(:,:,1) >= hueThreshold(1)) & (hsvImage(:,:,1) <= hueThreshold(2));
saturationMask = (hsvImage(:,:,2) >= saturationThreshold(1)) & (hsvImage(:,:,2) <= saturationThreshold(2));
valueMask = (hsvImage(:,:,3) >= valueThreshold(1)) & (hsvImage(:,:,3) <= valueThreshold(2));

colorMask = hueMask & saturationMask & valueMask;


  • 清理二值掩码:通过应用形态学操作(如膨胀和腐蚀)对二值掩码进行清理,以去除噪点并连接航线的断裂部分。这将生成更平滑的航线。
cleanMask = imclose(colorMask, strel('disk', 3));


  • 标记航线:使用bwlabel函数对清理后的二值掩码进行标记,将不同的航线分配不同的标签。
labeledImage = bwlabel(cleanMask);


可视化航线:使用label2rgb函数将标记的航线可视化,以便观察提取的航线。

rgbImage = label2rgb(labeledImage, 'jet', 'k', 'shuffle');
imshow(rgbImage);


  • 可选:提取指定数量的航线:如果你想提取指定数量的航线,可以使用regionprops函数计算每个航线的面积,并选择前n个面积最大的航线。这样就可以提取出指定数量的航线。
% 计算每个航线的面积
props = regionprops(labeledImage, 'Area');
areas = [props.Area];

% 根据航线面积降序排序
[sortedAreas, idx] = sort(areas, 'descend');

% 指定要提取的航线数量
numLines = 10;

% 提取前n个面积最大的航线
selectedLines = ismember(labeledImage, idx(1:numLines));

% 可视化提取的航线
selectedImage = label2rgb(selectedLines, 'jet', 'k', 'shuffle');
imshow(selectedImage);


通过以上步骤,你可以使用云模型算法从船舶航行轨迹密集图中提取指定颜色对应的航线,并根据阈值设定提取出指定数量的航线。你可以根据需要调整阈值范围和提取的航线数量,以获得最佳的结果。

回答问题 2023.05.28
加载更多