一只可爱的小猴子
码龄5年
求更新 关注
提问 私信
  • 博客:386,865
    社区:7
    问答:81
    386,953
    总访问量
  • 178
    原创
  • 649
    粉丝
  • 2
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2020-10-22

个人简介:即使再小的帆也能远航,无论什么时候都要保持自信

博客简介:

一只可爱的小猴子的博客

查看详细资料
个人成就
  • 获得1,129次点赞
  • 内容获得150次评论
  • 获得3,824次收藏
  • 代码片获得13,204次分享
  • 博客总排名102,934名
  • 原力等级
    原力等级
    6
    原力分
    2,555
    本月获得
    1
创作历程
  • 1篇
    2025年
  • 9篇
    2024年
  • 36篇
    2023年
  • 66篇
    2022年
  • 66篇
    2021年
成就勋章
TA的专栏
  • 安装配置问题栏
    10篇
  • 学习笔记
    2篇
  • ccf历年真题
    71篇
  • 课程学习
    4篇
  • 汇编
    1篇
  • 数据库
    2篇
  • 信息安全
    2篇
  • Java学习心得
    34篇
  • 数据结构
    16篇
  • c/c++语言程序设计练习题
    14篇
  • 编程题训练
  • 字符串大模拟题
    10篇
  • 思维训练题
    9篇
  • 分类讨论题
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 1

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

2022李宏毅老师机器学习课程笔记

机器学习:让机器找一个函数,通过函数输出想要的结果。应用举例:语音识别,图像识别,alphago深度学习:使用类神经网络去找一个函数函数的输入可以是向量,矩阵(图像数据),序列(语音,一段文字),输出可以是一个数值(回归),一个类别(分类),一段文字或图片(结构化信息)监督式学习:需要提前打标签,投喂学习自监督式学习:不需要标记,在训练下游任务之前,会预训练(自己先学会如何分类)
原创
博文更新于 2025.04.25 ·
1229 阅读 ·
18 点赞 ·
0 评论 ·
16 收藏

多重采样MSAA的实现

在计算机图形学中,在屏幕上显示对象时,可能会出现许多的“锯齿”,这些锯齿是由顶点数据像素化之后成为片段的方式所引起的,由于将数学意义上的坐标转换到物理的显示器硬件上进行显示,显示器是有一个个像素点构成的,并不能实现数学意义上的“无限小”的描述。不过,实际工业上应用时,增加的采样点并不是规则分布在每个像素内的,而是会按照特定的图案;只计算每个像素的颜色,而对于那些子采样点只计算一个覆盖信息和遮挡信息来把像素的颜色信息写到每个子采样点里面,最终根据子采样点里面的颜色值来通过某个重建过滤器来降采样生成目标图像。
原创
博文更新于 2024.03.18 ·
1419 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

基于RFID牛场养殖信息管理系统设计

该系统通过为每一只牛佩戴RFID标签动物耳钉作为信息载体,并依托网络、系统集成及数据库技术,在牛场养殖范围内建立一套信息化平台,实现在整个产业链中从饲料、养殖、防疫一直到销售的每个环节的数据信息进行全程记录,发展以RFID技术为基础的信息化精细养殖。该系统与传统养殖相比,创新之处在于能够全自动的精细养殖,提高了养殖效率的同时并降低了劳动成本和饲养成本,并且能够获得牲畜的所有信息实现科学饲养,并且可以通过售后的肉质分析以及市场以及国家需求进行动态的调整养殖方案,利用信息化技术提高产品的竞争力。
原创
博文更新于 2024.03.18 ·
1388 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

计算机体系结构重要知识点(期末复习)

1)指令集架构(ISA,Instruction Set Architecture) : ISA定义了计算机硬件和软件之间的接口,包括指令集、寄存器、数据类型、内存管理等方面的规范。指令系统的设计包括指令的功能设计和指令格式的设计。4)寻址方式的设计:设置寻址方式可以通过对基准程序进行测试统计,察看各种寻址方式的使用频率,根据适用频率设置必要的寻址方式;6)操作数表示和操作数类型:主要的操作数类型和操作数表示的选择有:浮点数据类型、整型数据类型、字符型、十进制数据类型等等;
原创
博文更新于 2024.03.18 ·
1518 阅读 ·
19 点赞 ·
0 评论 ·
14 收藏

解决pip安装 nibabel问题:ERROR: Operation cancelled by user,[WinError 10061] 由于目标计算机积极拒绝,无法连接。

在python终端下载库失败。
原创
博文更新于 2024.03.16 ·
2564 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

AcWing算法学习笔记:搜索与图论1(DFS + BFS + 树与图的深度优先遍历 + 树与图的广度优先遍历 + 拓扑排序)

每次将入度为0的点放入队列,该点弹出时,将其相连的点入度-1,并将入度为0的点入队。若存在环,整个过程中所有入度为0的点的个数小于总点数。使用bfs得到拓扑序列,并且可以判断该图中是否有环。使用邻接表存储有向图,并记录每个点的入度。两个重要概念:回溯和剪枝。
原创
博文更新于 2024.02.04 ·
738 阅读 ·
5 点赞 ·
0 评论 ·
15 收藏

AcWing算法学习笔记:贪心(区间问题 + Huffman树 + 排序不等式 + 绝对值不等式 + 推公式)

若该区间内没有点(左端点大于标记值),则将该区间的右端点设为新的标记值,并且点数加一。如果有偶数个仓库,那么将地址选在中间两个仓库间的任何一点都是最近的。说明该区间不能放进任何一个分组,则将这个区间加入堆(新开一组)说明该区间能够放进任意一个组中,则将其放入右端点最小的组。如果当前区间的左端点 <= 堆中最小右端点。寻找覆盖st的所有区间中右端点最大的区间。并将该区间的右端点更新st,区间数量加一。若这个区间有点,则不处理,跳过该区间。若没有找到能够覆盖st的区间,则无解。将所有区间的右端点从小到大排序。
原创
博文更新于 2024.02.04 ·
498 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

AcWing算法学习笔记:数据结构(单链表 + 双链表 + 栈 + 队列 +单调栈 + 单调队列 + KMP + Trie + 并查集 + 堆 + 哈希表)

并且取模的这个数需要是质数,并且尽可能离二的整次幂尽可能的远,这样发生冲突的概率是最小的。优化方法:将所有元素先乱序存入数组(建立起一个乱序完全二叉树),然后对这棵树的。初始建堆,若采用插入的方法,则时间复杂度为0(nlogn)这两种方法的删除操作都是开一个数组标记,不会真正进行删除。该优化方法由下图的证明可以得出时间复杂度为0(n)插入删除节点0(1)
原创
博文更新于 2024.02.04 ·
961 阅读 ·
6 点赞 ·
0 评论 ·
21 收藏

AcWing算法学习笔记:动态规划(背包 + 线性dp + 区间dp + 计数dp + 状态压缩dp + 树形dp + 记忆化搜索)

若体积从小到大进行遍历,当更新f[i, j]时,f[i - 1, j - vi] 已经在更新f[i, j - vi]时被更新了。因此体积需要从大到小进行遍历,当更新f[i, j]时,f[i - 1, j - vi] 还未被更新。并枚举每一个数字,若以该数字结尾的序列,其倒数第二个数字应该是小于该数字的最大的数。更新状态时,记录每一位子串是由哪一位结尾的子串转移而来的。将f[i]与f[i - 1]轮流交替使用数组进行存储。枚举每一个分组内的物品,进行01背包的选法策略。由于不存在01背包中的更新覆盖的情况。
原创
博文更新于 2024.02.04 ·
1547 阅读 ·
18 点赞 ·
0 评论 ·
24 收藏

AcWing算法学习笔记:基础算法(快速排序 + 归并排序 + 二分 + 高精度 +前缀和差分 + 双指针算法 + 位运算 + 离散化 + 区间和并)

如果a[i] + b[j] > x ,则不断左移j,当j停止移动时,a[i] + b[j] 只有可能等于或小于x ,如果是小于,再右移i,增大a[i]即可。i右移,使用s数组记录选中的数,当选中区间中有重复数字出现时,j右移,当选中区间没有重复数字时j停止移动。A * a (大整数A 和 小整数a相乘,A位数为1e6,a数值为1e9)A ➗ a (大整数A 和 小整数a相乘,A位数为1e6,a数值为1e9)利用某种性质,使数组一分为二,不断缩小区间,最后找到性质的边界范围。
原创
博文更新于 2024.02.04 ·
2453 阅读 ·
16 点赞 ·
0 评论 ·
61 收藏

算法学习笔记:质数判定 + 质数分解 + 筛质数 + 求约数 + 约数个数 + 约束的和 + 最大公约数

质数以及约数的简单数论
原创
博文更新于 2024.02.04 ·
94 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

算法学习笔记:二分图的判定(染色法) + 二分图的最大匹配(匈牙利算法)

染色法:判定图是否是二分图匈牙利算法求二分图的最大匹配待字闺中,占为己有,名花有主,求他放手
原创
博文更新于 2024.02.04 ·
62 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

算法学习笔记:最小生成树(prim + kruskal)

prim :依次加入与集合距离最近的点kruskal:依次加入距离最短的并且不在集合内的边
原创
博文更新于 2024.02.04 ·
73 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

算法学习笔记:最短路(朴素dijkstra + 堆优化dijkstra + Bellman-Ford + spfa + floyd)

【代码】算法学习笔记:最短路(朴素dijkstra + 堆优化dijkstra + Bellman-Ford + spfa。
原创
博文更新于 2024.02.04 ·
104 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

人工智能练习题 + 知识点汇总(期末复习版)

认识智能的观点包括:思维理论、知识阈值理论、进化理论思维方式包括:抽象思维、形象思维、灵感思维人工智能研究的领域包括:符号智能、计算智能、机器学习、机器感知智能包含的能力包括:感知能力、记忆和思维能力、学习和自适应能力、行为能力图灵测试是图灵在1950年在论文中《计算机与智能》中提出的机器学习包括监督学习、强化学习、非监督学习Al的诞生是在1956年参加达特茅斯会议的有麦卡锡、明斯基、香农、洛切斯特费根鲍姆提出"知识工程"概念人工智能的三大学派包括符号学派、联结学派、行为学派专家系统是.
原创
博文更新于 2023.06.06 ·
62489 阅读 ·
256 点赞 ·
13 评论 ·
1655 收藏

ccf-csp历年满分题解 + 考点汇总 + 经验总结 + 常用代码模板(已完成63题,持续更新中...)

3. 当题目中没有过多的说明某个操作或数据可能出现的情况,但确实可能会出现递归处理等情况,可以先不考虑递归的情况,后续实在没有其他错误的时候,再来修改这个操作的处理情况(比如说,这道题目中,cancel这个记录有没有可能操作的是一条cancel记录,出现递归的情况,但是。//右对齐,字符宽度为m,如果要输出的字符宽度>=m,则全部输出,如果字符宽度
原创
博文更新于 2023.04.13 ·
9003 阅读 ·
25 点赞 ·
5 评论 ·
221 收藏

202212-3 CCF JPEG 解码 满分题解(超详细注释代码) + 两种解题思路(z字形模拟 / 打表法)

解题思路用图表示,清晰易懂。
原创
博文更新于 2023.04.13 ·
1423 阅读 ·
3 点赞 ·
3 评论 ·
4 收藏

蓝桥杯常犯的错误以及经验总结(考前冲刺必看)

从1开始枚举输出它的因子,很快就可以就可以在众多因子种找到那个最接近并小于三次方根的答案,也就是120258,将1~120258中的因子存起来,第一个维度只有可能是这42个因子,再往后的就是重复数据(因为下一个因子的三次方大于2021041820210418),第二个维度从1开始枚举即可,,可以检查数据输入的正确性,准确率会更高,并且这道题目可以根据将同一个折扣的价格先累加再×同一个折扣,这样减少输入,并且可以快速查询是否有漏乘和多乘的情况。,这道题目相当于找因子,只需要找出所有的因子组合,然后根据。
原创
博文更新于 2023.04.05 ·
1225 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

解决pip安装numpy问题:ERROR: Failed building wheel for numpy/ERROR: numpy-1.22.4+mkl-cp38-cp38-win_amd64.wh

害怕的本身是最可怕的,除此之外,没什么是可怕的。使用pip._internal命令查看支持版本(❌)直接pip install 轮子文件(❌)我根据上述步骤最终是成功了。
原创
博文更新于 2023.03.30 ·
7725 阅读 ·
4 点赞 ·
1 评论 ·
9 收藏

202209-3 CCF 防疫大数据 满分题解(超详细讲解 + 注释代码) + 解题思路(STL模拟)

在判断该用户是否是风险人群时,需要判断[d1, d]区间内地点r是否是风险地区,所以需要把地点r的风险起始终止时间存储下来,可以采用map结合pair。如果之前r不是风险地区或者d - 1天时已经不是风险地区,那么需要将r的风险起始时间更新为d,否则不更新。在d天确认地点r为风险地区,那么目前r的风险终止时间一定会被更新成d + 6(未来7天内)有了地区的风险时间段之后,就可以根据题目给出的条件判断这个用户是否是风险人群就可以了。首先得到风险地区后,先更新每一个地区的风险时间段。当天就得出当天的风险人群。
原创
博文更新于 2023.03.22 ·
1183 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏
加载更多