江畔柳前堤
码龄5年
求更新 关注
提问 私信
  • 博客:221,118
    221,118
    总访问量
  • 149
    原创
  • 1,330
    粉丝
  • 21
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2020-10-16

个人简介:就像站在烈日骄阳大桥上......

博客简介:

https://github.com/foxpup11?tab=repositories

查看详细资料
个人成就
  • 获得2,314次点赞
  • 内容获得25次评论
  • 获得3,058次收藏
  • 代码片获得760次分享
  • 博客总排名20,966名
  • 原力等级
    原力等级
    5
    原力分
    1,170
    本月获得
    2
创作历程
  • 59篇
    2025年
  • 90篇
    2024年
成就勋章
TA的专栏
  • AI大模型
    7篇
  • 写作
    5篇
  • 软件开发
    22篇
  • 机器学习&深度学习
    32篇
  • pyQT
    11篇
  • 信号与系统
    10篇
  • 信息论
    14篇
  • 深度学习论文精读
    46篇
  • 重构大学数学基础
    8篇
  • PyTorch
    7篇
  • 吴恩达深度学习编程作业
    3篇
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 收藏
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 收藏

  • 社区

搜索 取消

AI大模型03_RAG入门

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了信息检索与生成式AI的技术框架,旨在提升大语言模型(LLM)生成内容的准确性可靠性和相关性。其核心思路是:在生成回答前,先从外部知识库中检索与问题相关的信息,再将这些信息作为"参考资料"输入给模型,辅助其生成更贴合事实的结果。与传统生成式AI(如ChatGPT)相比,RAG解决了两大关键局限:一是知识截止日期固定(无法获取最新信息),二是可能生成"幻觉"(虚构不存在的事实)。
原创
博文更新于 2025.09.11 ·
871 阅读 ·
12 点赞 ·
0 评论 ·
6 收藏

XZ05_关于矢量图导入CorelDraw软件的一些问题

将非 CorelDRAW 制作的图形转换成符合期刊要求的 CDR 格式需要一些步骤和注意细节。核心思路是:确保图形最终是矢量格式(可编辑),并尽可能在导出/转换前就满足期刊的格式细节(字体、字号、线宽等)。以下是如何针对你使用的工具进行操作的步骤和建议:核心目标:获得符合要求的 CorelDRAW (.cdr) 矢量文件。• 关键:导出为矢量格式!• 关键:导出为高质量矢量格式!• 警告: 期刊明确要求“不是位图”,必须是可编辑的矢量图。位图放大后会模糊,且无法调整线条、字体等细节。
原创
博文更新于 2025.09.11 ·
1117 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

XZ04_解决typora无法识别行内公式的问题

在技术写作、笔记整理和文档编辑的领域,Typora和Markdown已经成为开发者、学生和内容创作者的必备工具。它们以简洁、高效和跨平台兼容性著称,尤其适合需要频繁撰写技术文档、博客或学术论文的用户。本文将从基础概念入手,深入解析 Markdown 的原理和 Typora 的功能,并结合实际应用场景,帮助你快速上手这两个工具。Markdown 是一种轻量级标记语言,由 John Gruber 于 2004 年开发。它的设计目标是让非技术人员也能轻松编写结构化文档,同时保持纯文本的可读性。通过简单的符号(如。
原创
博文更新于 2025.06.17 ·
1168 阅读 ·
26 点赞 ·
0 评论 ·
27 收藏

AI大模型02_Dify平台介绍

在生成式AI技术快速发展的背景下,企业对AI应用的需求从“实验室原型”转向“生产级落地”。然而,复杂的开发流程、高昂的部署成本以及技术门槛,成为制约企业落地AI的关键瓶颈。无论是企业用户还是开发者,都能通过这一平台快速构建智能客服、内容生成、数据分析等应用,显著降低技术门槛与成本。随着与亚马逊云科技的深度集成与社区生态的扩展,Dify正成为企业AI转型的核心引擎。,为企业和开发者提供了从模型集成到应用部署的完整解决方案。,通过可视化界面和模块化工具,实现从模型训练到部署的全流程自动化。
原创
博文更新于 2025.05.28 ·
1444 阅读 ·
4 点赞 ·
1 评论 ·
9 收藏

AI大模型01_Hugging Face平台介绍

它不仅提供了丰富的预训练模型库、高效的数据处理工具,还通过开源社区和开放API推动了AI技术的普及与创新。从快速推理到复杂微调,从研究探索到生产部署,Hugging Face提供了全方位的支持。随着技术的不断演进,Hugging Face将继续推动AI的普及与创新。它以其强大的预训练模型、易用的API和活跃的社区著称,为开发者和研究人员提供了从研究到工业级应用的完整解决方案。是Hugging Face的核心项目,支持加载和使用数千种预训练模型(如BERT、Llama、Stable Diffusion等)。
原创
博文更新于 2025.05.28 ·
1198 阅读 ·
29 点赞 ·
0 评论 ·
23 收藏

SD08_解决由于anaconda版本过低无法安装高版本python的问题

如果以上方法均未解决问题,请提供具体错误日志,以便进一步分析。
原创
博文更新于 2025.05.27 ·
2138 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

SD07_NVM的安装及相关操作

通过 NVM,你可以轻松在 Windows 上管理多个 Node.js 版本,避免版本冲突问题。如果需要进一步优化开发环境,可结合。工具实现更灵活的版本管理。
原创
博文更新于 2025.05.27 ·
1121 阅读 ·
25 点赞 ·
0 评论 ·
10 收藏

ML30_使用GeNle生成贝叶斯网络数据集

若选择“Use state indices instead of state lDs”,则只生成状态0,1等。生成结果如下,为txt格式,可能需要编写python脚本转化为规范的csv等格式的文件。可以选择生成的数据集路径等。
原创
博文更新于 2025.05.27 ·
540 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

LangChain03-图数据库与LangGraph

图数据库与 LangGraph 的集成,为复杂关系建模和智能决策提供了全新的技术范式。通过GraphRAG技术,系统能够在保持语义关联性的同时,实现高效的多跳推理。在医疗、金融等垂直领域,这种融合架构已展现出超越传统方法的潜力,为行业智能化转型提供了坚实的技术基座。参考资料LangChain 官方文档Neo4j 与 LangChain 集成指南GraphRAG 在医疗领域的应用版权声明:本文为 CSDN 博客原创内容,转载请注明出处。
原创
博文更新于 2025.05.25 ·
1080 阅读 ·
29 点赞 ·
0 评论 ·
14 收藏

LangChain02-Agent与Memory模块

LangChain支持通过Tool类封装任意外部功能。例如,开发一个文件读取工具import osdescription="读取指定路径的文本文件内容"摘要策略使用LLM生成对话摘要(如“用户多次询问退货政策”)。通过正则表达式提取关键信息(如订单号、时间戳)。代码示例:动态上下文截取算法加密存储:对会话历史、用户偏好等敏感数据加密。权限控制:通过RBAC(基于角色的访问控制)限制工具调用权限。
原创
博文更新于 2025.05.25 ·
1119 阅读 ·
12 点赞 ·
0 评论 ·
30 收藏

LangChain01-核心原理与链式工作流

信息冗余:多个文档可能重复描述同一内容。上下文丢失:长文本摘要可能遗漏关键细节。简单场景:直接使用 LLMChain + Prompt 模板。复杂场景:结合 Agent 和 Memory 模块实现自动化决策。
原创
博文更新于 2025.05.25 ·
790 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

Ollama01-安装教程

Ollama 是一个轻量级的本地大语言模型运行平台,支持多种开源模型(如 DeepSeek、Llama 等)。通过 Ollama,你可以在本地设备上高效运行大语言模型,无需依赖云端服务,保障隐私和数据安全。本教程将详细指导你在 Windows 系统上完成 Ollama 的安装、配置及模型运行。如果需要进一步优化或扩展功能,可以参考 Ollama 的官方文档或社区资源。为了避免 C 盘空间不足,建议将模型存储路径迁移到其他磁盘(如 D 盘)。默认情况下,Ollama 会将模型存储在。)以允许局域网访问。
原创
博文更新于 2025.05.24 ·
1296 阅读 ·
22 点赞 ·
0 评论 ·
31 收藏

PyQt学习系列11-综合项目:多语言文件管理器

本系列课程到此结束!通过本课程的学习,您将掌握如何构建一个完整的多语言桌面应用,并为后续开发复杂软件打下基础!(原课程规划中的第十五课,按用户要求调整为第十一课)打开Qt Designer,创建。保存UI文件后,使用。
原创
博文更新于 2025.05.24 ·
1080 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

PyQt学习系列10-性能优化与调试技巧

【代码】性PyQt学习系列10-性能优化与调试技巧。
原创
博文更新于 2025.05.24 ·
1374 阅读 ·
8 点赞 ·
0 评论 ·
23 收藏

PyQt学习系列09-应用程序打包与部署

包括内存泄漏检测、日志输出、性能分析工具的使用等!
原创
博文更新于 2025.05.24 ·
1083 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

PyQt学习系列08-插件系统与模块化开发

将程序打包为独立可执行文件,并处理资源文件和依赖项!(原课程规划中的第12课,按用户要求调整为第9课)创建一个抽象接口类,声明插件必须实现的方法。:路径错误、缺少依赖库、插件签名不匹配。创建两个插件类:加法插件和乘法插件。:未正确继承接口类或未实现抽象方法。生成资源文件,然后编译为动态库(
原创
博文更新于 2025.05.24 ·
1108 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

PyQt学习系列07-数据库操作与ORM集成

在现代桌面应用程序中,数据持久化是核心需求。PyQt通过QtSql模块提供了对多种数据库的完整支持(如SQLite、MySQL、PostgreSQL),并结合ORM框架(如SQLAlchemy、Django ORM)可实现高效的数据管理。核心目标连接数据库(SQLite、MySQL、PostgreSQL等)。执行SQL语句(增删改查)。使用数据模型类集成ORM框架数据库连接:SQLite、MySQL、PostgreSQL的支持。基本CRUD操作:使用QSqlQuery执行SQL语句。数据模型类。
原创
博文更新于 2025.05.24 ·
1339 阅读 ·
18 点赞 ·
0 评论 ·
22 收藏

PyQt学习系列06-网络编程与通信协议

TCP/UDP通信:使用QTcpSocket和QUdpSocket实现客户端-服务器通信。HTTP/HTTPS请求:通过管理异步请求。WebSocket通信:实现实时双向数据传输。多线程网络操作:避免UI卡顿,提升程序响应性。高级技巧:解决粘包/半包问题,处理网络错误。下节课预告第七课将深入讲解PyQt的数据库操作与ORM集成,包括SQLite、MySQL、PostgreSQL的支持以及使用SQLAlchemy进行对象关系映射(ORM)。请持续关注后续内容!参考资料。
原创
博文更新于 2025.05.24 ·
1144 阅读 ·
11 点赞 ·
0 评论 ·
18 收藏

PyQt学习系列05-图形渲染与OpenGL集成

PyQt默认基于2D绘图(QPainter),但某些场景需要高性能3D图形或复杂视觉效果(如科学可视化、游戏开发、虚拟现实)。此时需结合OpenGL(跨平台图形API)实现硬件加速渲染。核心目标实现3D图形渲染(如模型加载、光照、纹理)。优化2D绘图性能(如大规模数据可视化)。自定义着色器效果(如粒子系统、后期处理)。:实现OpenGL渲染的核心控件。3D模型加载:使用解析OBJ文件。着色器编程:自定义顶点/片段着色器。高级渲染技巧:纹理映射、粒子系统、后期处理。下节课预告第六课将深入讲解。
原创
博文更新于 2025.05.24 ·
1410 阅读 ·
9 点赞 ·
0 评论 ·
23 收藏

PyQt学习系列04-多线程与异步编程

在GUI应用程序中,长时间运行的任务(如文件读写、网络请求、复杂计算)会阻塞主线程,导致界面卡顿甚至冻结。通过多线程和异步编程,可以将这些任务移至后台线程,确保主线程(UI线程)的响应性。核心目标避免界面卡顿:将耗时操作与UI更新分离。提高并发性能:同时处理多个任务(如多文件下载)。实现异步通信:支持非阻塞式网络请求或数据库操作。QThread:实现后台任务与UI交互。:高效管理大量短生命周期任务。:简化线程池使用。asyncio:与Qt事件循环集成的异步编程。线程安全。
原创
博文更新于 2025.05.24 ·
1181 阅读 ·
32 点赞 ·
0 评论 ·
29 收藏
加载更多