Anfies
码龄5年
求更新 关注
提问 私信
  • 博客:70,631
    70,631
    总访问量
  • 8
    原创
  • 150
    粉丝
  • 122
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:吉林省
加入CSDN时间: 2020-09-29

个人简介:天之道,损有余而补不足,人之道,损不足以奉有余。

博客简介:

点点点

查看详细资料
个人成就
  • 获得318次点赞
  • 内容获得19次评论
  • 获得1,036次收藏
  • 代码片获得1,669次分享
  • 博客总排名1,378,642名
创作历程
  • 1篇
    2024年
  • 7篇
    2022年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • 编程语言
    pythonc++
  • 人工智能
    人工智能深度学习tensorflowpytorch图像处理
  • 游戏
    unity游戏美术
  • 音视频
    opencv计算机视觉
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

python人工智能教程——清理C盘

当我们在肝了很多项目之后,往往会发现C盘爆红,可上网搜寻C盘清理攻略时却发现都是很寻常很普遍的方法。跟着教程清理一遍后并没有什么效果,而自己找到一些大文件后也不清楚该不该清理。为了解决这些问题,这篇博文应运而生。
原创
博文更新于 2024.01.10 ·
1951 阅读 ·
16 点赞 ·
0 评论 ·
14 收藏

python人工智能教程——Matplotlib入门

Matplotlib是python中开源的用于绘图的工具包,具有强大的数据可视化功能。
原创
博文更新于 2022.10.15 ·
921 阅读 ·
2 点赞 ·
2 评论 ·
6 收藏

python人工智能教程——Pandas入门

Pandas是基于Numpy实现的,其名字来源于两个词语——面板数据(panel data)和数据分析(data analysis)。Pandas最初被应用于金融交易领域,而在经济学中,面板数据是关于多维数据的术语,因此,从Pandas的名字就可以看出它的功能——多维数据的分析。Pandas也的确是python中必不可少的数据分析工具,为了将来能够应对数据处理的问题,我们还是需要对它进行学习的。
原创
博文更新于 2022.10.15 ·
724 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

python人工智能教程——Numpy入门

数组(array)有别于python数据结构中的列表(list)。因为我们在实际项目如计算机视觉中处理的数据一般都是图片,是矩阵结构,矩阵最大的特点就是向量化操作。在python中数组可以实现向量化的操作,而列表并不具备这个功能。
原创
博文更新于 2022.10.15 ·
945 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

python语法教程——def()函数

函数的定义以关键字def开头,后面接函数名称和圆括号。括号中放入函数需要的参数。通过冒号和缩进控制函数内容。def 函数名(参数) : 函数体在学习一门语言时,我们最先学会的是如何输出Hello world。那么,我们的第一个函数也就从最简单的输出Hello world开始。') hello()可以看到,我们调用了我们定义的hello函数,函数执行了其中的print语句。这里我们定义一个可以计算两个数之和的函数add,可以先运行一下看看。3函数完美地计算出了1加2的值。
原创
博文更新于 2022.10.15 ·
58116 阅读 ·
272 点赞 ·
16 评论 ·
948 收藏

python语法教程——class类

这里我们就以输出Hello world为例创建我们的第一个类。可以看到,我们创建了一个名为hello的类,并用它实例化了一个to_hello对象,通过调用类中的output方法,我们成功输出了Hello world!首先,我们定义一个student类,用于存放学生姓名。先运行一下看看。def output(self) : print('My name is' , self . name) stu_1 = student('老王') stu_1 . output()My name is 老王。
原创
博文更新于 2022.10.15 ·
5184 阅读 ·
17 点赞 ·
0 评论 ·
45 收藏

python人工智能教程——虚拟环境以及包的管理

什么是虚拟环境?我为大家举一个例子。一个python项目A需要某个包的1.0版本,但你不满足于做一个项目,又做了一个python项目B,但是这个项目B需要同样包的2.0版本,这就导致了冲突。我们总不能做项目A时降版本,做项目B时升版本吧。于是人们便提出了一种用于存放包的容器——虚拟环境(virtual environment)。而Anaconda就是一个包和环境的管理器,其中含有超过7500个开源包,为我们提供了强大的后盾。
原创
博文更新于 2022.10.09 ·
1427 阅读 ·
5 点赞 ·
1 评论 ·
15 收藏

python人工智能教程——pycharm加载解释器

当我们通过Anaconda将我们需要的环境和包安装好后,我们就需要在pycharm中加载python解释器了。到这个界面后先点击“conda环境”,再点击“现有环境”,一般来讲解释器的路径会智能地给我们把新创建环境中的python解释器的路径标上。但如果没有,点击右侧的三个点。找到Anaconda的安装路径里的envs文件夹,从里面找到我们新创建的环境的名称,然后找到里面的python.exe,再点击确定就ok了。我们的新环境中刚刚安装了numpy包,我们来测试一下。如下所示,按数字顺序点击。
原创
博文更新于 2022.10.08 ·
1359 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏