北辰_
码龄7年
求更新 关注
提问 私信
  • 博客:7,594
    社区:1
    问答:32
    7,627
    总访问量
  • 13
    原创
  • 21
    粉丝
  • 39
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2018-08-14

个人简介:起风了,唯有努力生存

博客简介:

qq_42962572的博客

查看详细资料
个人成就
  • 获得83次点赞
  • 内容获得1次评论
  • 获得44次收藏
  • 博客总排名86,332名
  • 原力等级
    原力等级
    1
    原力分
    71
    本月获得
    1
创作历程
  • 13篇
    2025年
成就勋章
TA的专栏
  • claude code
    1篇
  • playwright
    1篇
  • mac
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络图像处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Stagewise快速上手

确保 Node.js 版本 ≥ 18.0。
原创
博文更新于 2025.09.18 ·
397 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Claude Code配置Playwright MCP

Claude Code配置Playwright MCP windows系统和mac系统的配置方法
原创
博文更新于 2025.09.02 ·
784 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

PaddleOCR 部署手册

【代码】PaddleOCR 部署手册。
原创
博文更新于 2025.07.24 ·
792 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

Claude code 使用教程

确保 Node.js 版本 ≥ 18.0。
原创
博文更新于 2025.07.15 ·
1278 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

Prompt Optimizer本地部署

下载windows版本安装,如果电脑里面没有WSL,安装docker desktop后会自动安装WSL,安装好WSL后,启动docker desktop,就行了。如果不满意,可以把生成的新提示词,修改后再提交给模型继续优化和修改。git clone可能会失败,因为网络不稳定,换时间多试试就好了。用下列指令查看这三个的版本,如果不达标或者没装就自行安装。左上是初始的提示词,用来填入你自己编写的需求。右上是测试提示词的窗口,输入用户问题。配置好模型的api,就能使用了。左下是模型优化后的提示词。
原创
博文更新于 2025.07.07 ·
307 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

NewAPI部署和应用

new ap可以设置用不同模型的花销,然后给不同的api key限制额度,这个api key还可以设置多久过期,也能查看使用了多少额度,也能充值额度。在FastGPT的文档里面有部署Docker和Docker compose的方法。输入名称,模型名,api key,base url之类的信息。用Docker compose部署new api。在页面上方靠左,点击“控制台”进入控制台。就可以生成一个api key了。在左侧的选项卡选择“渠道”在左侧的选项卡选择“令牌”然后点击“添加渠道”设置好后点击“提交”
原创
博文更新于 2025.07.07 ·
1478 阅读 ·
10 点赞 ·
1 评论 ·
6 收藏

百度PaddleOCR 文档识别+FastAPI服务部署

为满足扫描类PDF转文字的业务需求,采用百度提供的PaddleOCR解决方案。这套基于飞桨框架的OCR工具库具备多语言文本识别、版面检测、公式识别和表格识别等功能。使用以下命令开启docker服务 8200为docker宿主机访问端口,8000为docker内部网络端口。文件夹,并在其中新建 fastapioutput 文件夹,用于临时存储待转换文字的扫描件 PDF。中新建一个Dockerfile文件,复制以下内容。若Docker容器使用GPU加速宿主机需要安装。并使用以下命令启动docker服务。
原创
博文更新于 2025.07.07 ·
642 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

终端复用保活工具screen

是 Linux 下一个强大的终端复用工具,允许用户在一个终端窗口中创建多个虚拟终端会话,并在这些会话之间自由切换。多个用户可同时连接到同一个 screen 会话,协作操作(需权限配置)。会话仍会在后台继续运行,非常适合长时间运行的任务或远程管理。快捷键:Ctrl + A 然后按 D(先按组合键,再按单键)。Ctrl + A 后按 N:切换到下一个窗口。Ctrl + A 后按 P:切换到上一个窗口。Ctrl + A 后按 ":查看所有窗口列表。会话仍会保留,重新连接后可恢复工作。每个窗口独立运行不同的任务。
原创
博文更新于 2025.07.07 ·
282 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

GIT各种基础操作手册

先拉取远程最新状态(自动合并),再将本地提交推送(适合个人分支日常同步):填写清晰描述,避免"fix bug"等模糊信息。应急场景 :临时切分支修复bug,但当前代码未完成。:可勾选部分文件/代码块提交(比命令行更精细):自动合并可能产生冲突,需提前保存工作进度。:复制整个远程仓库到本地(含所有分支历史):首次获取项目时使用,自动创建远程关联。:若远程有更新,需先Pull避免冲突。:未提交的修改会被覆盖,切换前建议。:将本地提交同步到远程仓库。:切换分支/标签/特定提交。:只下载远程变更记录,
原创
博文更新于 2025.07.07 ·
193 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Linux系统级守护进程systemd

系统中的一个系统和服务管理器。它负责初始化系统、管理系统服务、维护系统状态、控制系统资源,并提供一系列其他功能来简化系统管理。在 Linux 生态系统中,systemd 的引入代表了一次重大变革,因为它取代了传统的 System V init 系统,提供了更快的启动速度、更强大的依赖管理以及更高的灵活性。1.编写服务单元配置。
原创
博文更新于 2025.07.07 ·
334 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

DOCKER容器保活的真相:主进程生命周期

关键原则容器的存活完全依赖其内部的 PID 1 主进程(即ENTRYPOINTCMD指定的进程)示例命令。
原创
博文更新于 2025.07.07 ·
466 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

SSH隧道免密连接

摘要:本文介绍了如何通过SSH实现免密连接和隧道隧穿。首先使用ssh-keygen生成RSA密钥对(4096位),并设置适当的文件权限。然后将公钥添加到远程服务器的authorized_keys文件中。测试连接后,通过修改sshd_config确保密钥认证可用。最后详细说明了如何建立SSH隧道(-L参数)进行端口转发,以及如何后台运行(nohup)和检查SSH监听端口。文中还包含了测试连接的curl命令示例,展示了如何通过隧道访问远程服务。
原创
博文更新于 2025.07.07 ·
225 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

YOLO自制数据集并训练

将要训练的数据图像按照8:2 的训练集:验证集的比例随机分割,分别存放在images/train和images/val中。yolo可以在训练过程中自动调整超参数(如学习率、权重衰减等),没有较深的经验建议不设置超参数。建议将制作好的标签所在的文件夹重命名为labels copy 再创建一个labels文件夹。由于labelme默认输出coco格式标签数据,需要转换为yolo格式才能进行训练。进行相关设置(这里讲的是训练集设置,验证集的设置同理)names是从0开始的,后面是对应的标签名称。
原创
博文更新于 2025.07.07 ·
403 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

如何让不能断网使用的app断网使用

发布问题 2022.06.29 ·
2 回答