python收藏家
码龄8年
求更新 关注
提问 私信
  • 博客:527,696
    问答:165,537
    693,233
    总访问量
  • 376
    原创
  • 1,801
    粉丝
  • 3
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2018-04-21

个人简介:记录python学习笔记,分享python相关知识与案例,人生苦短,我用python。随缘更新~ 微信号:avine1003。有需要交流请留言或私信,看到即回。

博客简介:

python收藏家的博客

查看详细资料
个人成就
  • 获得2,492次点赞
  • 内容获得82次评论
  • 获得4,033次收藏
  • 代码片获得27,634次分享
  • 博客总排名86,755名
  • 原力等级
    原力等级
    8
    原力分
    6,070
    本月获得
    4
创作历程
  • 23篇
    2025年
  • 127篇
    2024年
  • 198篇
    2023年
  • 11篇
    2021年
  • 18篇
    2018年
成就勋章
TA的专栏
  • python
    231篇
  • 数据分析
    51篇
  • 机器学习
    105篇
  • 可视化
    35篇
  • 数据科学
    45篇
  • 人工智能
    7篇
  • demo
    5篇
  • 推荐系统
    2篇
  • 爬虫
    3篇
  • 算法
    12篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

TA的推广
兴趣领域 设置
  • Python
    python
  • 数据结构与算法
    推荐算法
  • 人工智能
    机器学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 问答
  • 代码仓
  • 资源
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 问答

  • 代码仓

  • 资源

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 收藏

搜索 取消

机器学习 | 基于回归模型的交通需求预测案例分析及代码示例

交通需求预测是优化交通规划和资源管理的重要工具。通过回归分析,预测模型可以利用历史数据和关键影响因素准确预测未来需求。通过采用结构化的方法进行数据预处理、特征工程和模型选择,交通规划人员可以提高服务质量,提高运营效率,更好地满足乘客需求。
原创
博文更新于 2025.04.27 ·
1424 阅读 ·
30 点赞 ·
2 评论 ·
30 收藏

Python | 分层线性模型的实现及示例

分层线性模型(Hierarchical Linear Model,简称HLM),也被称为多层模型(Multilevel Model)或混合效应模型(Mixed-Effects Model),是一种统计模型,用于分析具有层次结构的数据。这种模型能够考虑到数据中的个体观测值可能受到它们所属的较高层次的群体的影响。在真实世界的数据中,观测值通常嵌套在组中,将数据视为独立的可能会导致不准确的估计。HLM通过整合层次结构来帮助纠正这一点,使其在分析教育、心理或医疗数据等复杂数据集时更加准确。
原创
博文更新于 2025.04.23 ·
1338 阅读 ·
14 点赞 ·
0 评论 ·
22 收藏

如何使用Python进行自动化的系统管理?

Python的多功能性使其成为系统管理任务的理想工具。凭借其全面的库和自动化复杂流程的能力,Python可以大大提高管理系统、处理文件、管理用户权限、自动化网络配置和调度任务的效率。无论是监控系统性能、自动化备份还是配置服务器,Python都提供了简化工作流程所需的工具,使其成为任何系统管理员的必备工具。
原创
博文更新于 2025.04.18 ·
1015 阅读 ·
17 点赞 ·
1 评论 ·
14 收藏

Python | 在Pandas中按照中值对箱形图排序

在Pandas中按中值对箱形图进行排序可以增强可视化的清晰度和可解释性,特别是在处理多个类别时。通过遵循本文中概述的步骤,您可以轻松地计算中位数,重新排序类别,并使用Pandas和Seaborn创建排序箱形图。
原创
博文更新于 2025.04.13 ·
1051 阅读 ·
26 点赞 ·
1 评论 ·
6 收藏

Python中的AdaBoost分类器:集成方法与模型构建

集成方法的核心思想是通过结合多个模型的预测结果来提高整体性能。Bagging:通过并行训练多个模型,并对它们的预测结果进行投票或平均。例如,随机森林(Random Forest)就是基于Bagging的集成方法。Boosting:通过顺序训练多个模型,每个模型都试图纠正前一个模型的错误。AdaBoost是Boosting的代表算法之一。Stacking:通过训练一个元模型来结合多个基模型的预测结果。AdaBoost 是一种强大的集成学习方法,具有高准确性、易于实现和自动处理样本权重等优点。
原创
博文更新于 2025.04.09 ·
831 阅读 ·
26 点赞 ·
0 评论 ·
9 收藏

Python | 使用Matplotlib绘制Swarm Plot(蜂群图)

您可以向蜂群图添加文本注释以突出显示某些数据点。当您想要指出特定的值或类别时,这特别有用。注释有助于强调特定的数据点并提供额外的上下文。plt.show()在Matplotlib中创建蜂群图需要手动操作数据点的x轴位置以避免重叠。虽然像Seaborn这样的库简化了这个过程,但Matplotlib提供了根据特定需求定制蜂群图的灵活性。通过添加抖动、调整点大小和透明度以及使用颜色和标记形状,您可以创建有效且视觉上吸引人的蜂群图。
原创
博文更新于 2025.04.03 ·
1213 阅读 ·
13 点赞 ·
0 评论 ·
19 收藏

使用Python进行数据挖掘时如何有效的数据脱敏?

数据脱敏在数据挖掘中的应用非常重要,因为它允许数据科学家和分析师在不违反隐私法规和公司政策的前提下,对数据进行探索和分析。这在处理医疗记录、财务信息、个人身份信息等敏感数据时尤为重要。在数据挖掘项目中实施数据脱敏,可以减少数据泄露的风险,同时确保数据分析的结果有效和可靠。此外,数据脱敏也是许多数据保护法规(如欧盟的通用数据保护条例GDPR)的要求,有助于企业遵守这些法规,避免因数据泄露而产生的法律责任和经济损失。
原创
博文更新于 2025.03.30 ·
977 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

上下文离群值深度解析:定义、应用场景与检测方法实战

离群值基本上是数据集中与大多数数据显著不同的数据点。例如,如果大多数数据位于1-50的范围内,并且一个或两个点位于125-150,则这些点被称为离群值。与其他数据点相比,这些值异常高或异常低,导致总体统计分析和数据解释出现扭曲。它不能被称为噪音或错误。异常值可能由各种因素引起,包括数据收集中的错误、测量错误或数据中的真实变化。它可以通过统计技术或视觉方法来识别,例如箱形图,散点图或使用各种离群值检测算法。
原创
博文更新于 2025.03.26 ·
848 阅读 ·
29 点赞 ·
0 评论 ·
28 收藏

Python | 如何在Pandas中删除常量列

从数据集中删除常量列是数据预处理的关键步骤,特别是在机器学习和数据分析中处理大型数据集时。定义了常数列,并解释了它们在分析中缺乏意义。展示了使用Pandas识别和删除常量列的多种方法。提供了示例,包括在较大的数据集中删除常量列和处理特殊情况(如丢失数据)。通过有效地删除这些冗余列,我们可以提高模型的性能并简化分析。
原创
博文更新于 2025.03.23 ·
589 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

6个常见的Python设计模式及应用场景

设计模式是软件工程中的宝贵工具,它们提供了解决常见问题的通用方法。理解并掌握这些设计模式,可以帮助我们写出更加优雅和高效的代码。希望本文能够帮助你更好地理解和应用这些设计模式。
原创
博文更新于 2025.03.20 ·
422 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

DeepSeek-R1 技术路径示意图与训练流程解析

注:完整技术路径示意图可参考提供的训练流程图。该流程通过多阶段迭代,最终使模型在保持通用能力的同时,获得顶尖的数学推理性能。
原创
博文更新于 2025.03.16 ·
1923 阅读 ·
11 点赞 ·
0 评论 ·
19 收藏

使用Python实现蒙特卡罗方法的示例及应用

总的来说,蒙特卡罗方法是一种强大的工具,能够解决许多传统方法难以处理的复杂问题,其应用范围广泛,从理论研究到实际应用都有其身影。
原创
博文更新于 2025.03.12 ·
1052 阅读 ·
19 点赞 ·
0 评论 ·
6 收藏

Python | 机器学习中最常用的超参数及使用示例

这些超参数的选择通常依赖于具体问题、数据集的特性以及模型的类型。超参数调优是一个迭代的过程,通常需要多次实验来找到最佳的参数组合。
原创
博文更新于 2025.03.07 ·
1120 阅读 ·
5 点赞 ·
1 评论 ·
8 收藏

Python数据序列化技术:高效存储与传输的最佳实践

在选择数据序列化技术时,需要根据具体的应用场景和需求来决定。通用性和灵活性:如果需要处理各种复杂的Python对象,pickle是一个不错的选择。跨语言数据交换:如果需要在不同的编程语言之间交换数据,json和msgpack是更好的选择。高性能和网络传输:对于需要高效传输和存储的数据,msgpack和protobuf提供了更好的性能。数值数据:对于大型数值数组,numpy.save和numpy.load提供了高效的序列化和反序列化方法。pandas数据结构。
原创
博文更新于 2025.03.02 ·
862 阅读 ·
8 点赞 ·
1 评论 ·
15 收藏

机器学习中的嵌入(Embedding)学习笔记

嵌入的目的是捕捉数据中的内在结构和关系,同时减少数据的维度,提高计算效率。嵌入通常是通过无监督学习或自监督学习的方式获得的,这意味着它们可以从数据本身学习到有用的表示,而不需要外部的标签信息。想象一下,你有一个巨大的图书馆,里面有很多书,每本书都有成千上万的单词。但是,计算机只能处理数字,而不是文字。就像图书馆里的每本书都有一个条形码,嵌入给每个单词或概念一个独特的“条形码”,这样计算机就可以快速地识别和使用它们了。模型会计算句子中每个单词的嵌入向量,然后将它们结合起来,预测这个句子是正面的还是负面的。
原创
博文更新于 2025.02.25 ·
1285 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

Python | 使用Seaborn在同一散点图上可视化多个数据集

Seaborn提供各种自定义选项来增强可视化。您可以自定义标记、颜色,并添加其他元素,如回归线或误差条。1.自定义标记和颜色plt.show()2.添加回归线可以使用sns.lmplot向散点图添加回归线。plt.show()使用Seaborn在同一散点图上绘制两个数据集是一个简单的过程,涉及将数据集组合到单个DataFrame中并利用Seaborn强大的绘图功能。通过自定义标记、颜色和添加回归线等元素,您可以创建信息丰富且有吸引力的可视化效果,以清晰地传达数据集之间的关系。
原创
博文更新于 2025.02.22 ·
1019 阅读 ·
12 点赞 ·
0 评论 ·
15 收藏

机器学习 | scikit-learn中分块拟合vs一次性拟合所有数据

在分块拟合数据和一次性拟合数据之间进行选择取决于机器学习任务的具体要求,例如内存限制、实时更新的需求以及数据集的大小。使用partial_fit方法的增量学习为处理大型数据集提供了灵活的解决方案,而传统的完全拟合方法对于适合内存的较小数据集仍然有效。
原创
博文更新于 2025.02.12 ·
849 阅读 ·
6 点赞 ·
1 评论 ·
10 收藏

如何在Matplotlib中绘制多个Y轴刻度

Matplotlib是一个功能强大的Python库,在它的帮助下,我们可以绘制条形图,图表,绘图,比例等。在本文中,我们将尝试在Matplotlib中绘制多个Y轴刻度。
原创
博文更新于 2025.01.22 ·
834 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

机器学习 | 在scikit-learn中创建自定义交叉验证生成器

不平衡的数据集:标准方法可能无法很好地处理类不平衡,需要在训练期间进行过采样等技术。时间序列数据:时间序列数据中的时间依赖关系需要特殊处理以防止信息泄露。分组数据:当数据按某些特征分组时,在交叉验证期间维护这些组至关重要。过采样:在数据集不平衡的情况下,在训练期间对少数类进行过度采样可能是有益的。可以设计自定义生成器来处理此问题。自定义拆分逻辑:有时,需要根据特定需求自定义拆分逻辑,例如按某些特征分组或处理缺失数据。
原创
博文更新于 2025.01.19 ·
1058 阅读 ·
13 点赞 ·
0 评论 ·
21 收藏

Python | 使用Matplotlib进行图案填充和边缘颜色分离的三种方法

Matplotlib中的分离图案填充和边缘颜色增强了绘图的视觉吸引力和功能。通过使用rcParams、两次绘图和自定义Patch对象等方法,可以实现高级别的自定义。本文提供了关于如何实现这些技术的全面指南,并提供了完整的代码示例。尝试使用这些方法来创建符合您的特定要求和首选项的图。
原创
博文更新于 2025.01.15 ·
443 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏
加载更多