试剑江湖。
码龄8年
求更新 关注
提问 私信
  • 博客:757,014
    社区:330
    动态:3,418
    760,762
    总访问量
  • 293
    原创
  • 7,169
    排名
  • 1,877
    粉丝
  • 191
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2018-03-24

个人简介:做你没做过的事叫成长,做你不愿意做的事叫改变,做你不敢做的事叫突破。

博客简介:

天天新知

查看详细资料
个人成就
  • 获得860次点赞
  • 内容获得158次评论
  • 获得2,175次收藏
  • 代码片获得2,456次分享
  • 原力等级
    原力等级
    6
    原力分
    2,049
    本月获得
    32
创作历程
  • 25篇
    2025年
  • 26篇
    2023年
  • 47篇
    2022年
  • 95篇
    2021年
  • 204篇
    2020年
  • 77篇
    2019年
  • 16篇
    2018年
成就勋章
TA的专栏
  • Java精选
    付费
    17篇
  • AI大模型
    9篇
  • 云原生系列
    23篇
  • 大数据系列
    11篇
  • 编程语言系列
    1篇
  • Golang
    39篇
  • SpringBoot
    45篇
  • Python
    2篇
  • PHP
    2篇
  • 架构设计系列
    22篇
  • 分布式设计
    1篇
  • 系统设计
    2篇
  • 设计模式
    5篇
  • 算法和数据结构
    16篇
  • 最佳实践
    14篇
  • 数据库技术系列
    6篇
  • MySQL
    24篇
  • 中间件系列
  • Redis
    17篇
  • 消息队列
    12篇
  • 服务运维系列
    15篇
  • 网络编程
    16篇
  • Nginx
    10篇
  • 前端技术系列
    19篇
  • 移动开发系列
    2篇
  • bug采坑笔记
    25篇
  • 工具安装教程系列
    55篇
  • 技术实践总结
    10篇
  • 面试题精选

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 11

TA参与的活动 6

TA的推广
兴趣领域 设置
  • Java
    javaspring cloud
  • 数据结构与算法
    算法
  • 大数据
    hbasehadoophivesparkflink
  • 前端
    html5easyuivue.js
  • 后端
    phpgolang架构分布式spring cloud
  • 设计模式
    设计模式
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 问答
  • 关注/订阅/互动
  • 社区
  • 最近

  • 文章

  • 专栏

  • 问答

  • 关注/订阅/互动

  • 社区

搜索 取消

AI大模型核心概念解析:Token 究竟是什么?

Token是大语言模型处理文本的基本单元,代表最小意义单位,可以是单词、字符或子词。它作为文本与数字表示之间的桥梁,通过标记化技术(如BPE)将文本分割并映射为数值。Token的特点包括大小写敏感、数字分块不一致等局限性,影响模型处理能力。Token数量决定上下文窗口大小,而训练数据的Token量反映模型学习的信息量。标记化技术(如子词、词级)影响模型效率、多语言处理能力和成本计算。合理选择标记化方法对模型性能至关重要。
原创
博文更新于 2025.12.09 ·
958 阅读 ·
23 点赞 ·
0 评论 ·
18 收藏

AI大模型核心概念解析:对Token的理解

Token技术是连接AI模型与现实世界的桥梁,其发展将直接影响大模型的应用范围和性能上限。作为后端开发者,不仅要理解Token的技术原理,更要关注其在实际工程中的应用策略,才能在AI浪潮中把握机遇,应对挑战。
原创
博文更新于 2025.12.08 ·
1416 阅读 ·
11 点赞 ·
0 评论 ·
24 收藏

AI大模型核心概念解析:从Token到模型蒸馏

作为后端开发者,您不需要成为算法专家,但需掌握这些核心概念的工程含义,才能在架构设计、资源规划和团队协作中做出正确决策。希望这篇详解助您夯实基础,高效驾驭 AI 大模型浪潮!
原创
博文更新于 2025.12.07 ·
959 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

Agent之一文搞懂Agent开发核心链路

文章摘要 本文深入探讨了Agentic AI数据分析师的构建原理与实践经验。通过腾讯PCG开发的Dola数据分析助手案例,展示了自主AI如何完成从基础查询到复杂分析的全流程任务。文章系统介绍了Agent的四大核心能力(感知、决策、执行、进化)和四种形态(反思、工具调用、规划、多智能体协作),并分析了Agent开发框架的三个发展阶段。重点对比了AutoGen、LangGraph、Crew AI等主流框架的特点与适用场景,为AI Agent开发提供了实践参考。
转载
博文更新于 2025.11.27 ·
74 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java并发编程之线程池面试的高频问题

Java线程池是控制并发和优化性能的核心工具。文章从线程池存在的必要性出发,解析其核心原理和执行流程:通过3个机制(线程管理、任务队列、拒绝策略)实现任务的高效处理。详细介绍了ThreadPoolExecutor的7个关键参数及配置建议,强调生产环境应避免使用Executors工具类,而应手动配置参数。最后通过代码案例展示如何自定义线程池,包括线程工厂、拒绝策略等实现,并模拟任务执行过程,帮助开发者深入理解线程池的实际应用和问题排查。
原创
博文更新于 2025.09.15 ·
68 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Java之使用 MDC 实现日志链路跟踪

本文介绍了一种轻量级的日志链路跟踪实现方案,采用MDC技术解决微服务环境下请求日志追踪问题。该方案通过拦截器为每个请求生成唯一traceId并存入MDC,在日志格式中配置traceId输出,实现服务内部日志追踪。同时封装HTTP工具类传递traceId,并改造异步线程池确保多线程环境下traceId正常传递。相比Skywalking等复杂方案,本方法具有零侵入、低运维成本的优势,通过简单的uuid生成和日志配置,即可实现全链路请求日志追踪,提升问题排查效率。
原创
博文更新于 2025.09.14 ·
1166 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

架构设计之异地多活与单元化(Set化)

异地多活是指在不同城市建立独立的数据中心,关键点就是异地、多活,活是指这些数据中心在日常的业务中也需要走流量,多活就是多个数据中心,异地是指在不同的城市建立数据中心。和“活”相对应的是冷,冷备数据中心是指备份全量数据,平时不支撑业务需求。
原创
博文更新于 2025.04.26 ·
1154 阅读 ·
20 点赞 ·
0 评论 ·
20 收藏

架构设计之推荐系统初识

推荐系统是移动互联网时代非常成功的人工智能技术落地场景之一。本文我们将从架构设计的角度回顾和讨论推荐系统的一些核心算法模块,重点从离线层、近线层和在线层三个架构层面讨论这些算法。本文不会讲解一些具体推荐模块的架构设计,但无论什么推荐模块,其逻辑经过拆解后都可以映射到本文的架构体系中,做到触类旁通,举一反三。架构设计是一个很大的话题,本文这里只讨论和推荐系统相关的部分。更具体地说,我们主要关注的是算法以及其他相关逻辑在时间和空间上的关系——这样一种逻辑上的架构关系。下面介绍的是一些。
原创
博文更新于 2025.04.25 ·
744 阅读 ·
20 点赞 ·
0 评论 ·
30 收藏

云原生之认识DDD

充血模型更加符合现实中的对象,因为一个员工在现实世界里不只有姓名,年龄,电话等,还可以工作,吃饭,睡觉等行为,只有属性信息的对象不是一个完整的对象。1)贫血模型是事务脚本模式,贫血模型相对简单,模型上只有数据没有行为,业务逻辑由xxxService、xxxManger等类来承载,相对来说比较直接,针对简单的业务,贫血模型可以快速的完成交付,但后期的维护成本比较高,很容易变成我们所说的面条代码。这就是DDD要做的事情!贫血模型,所谓的贫血模型是在定义对象时,指定以对象的属性信息,却没有对象的行为信息。
原创
博文更新于 2025.04.24 ·
1498 阅读 ·
41 点赞 ·
1 评论 ·
50 收藏

Java基础之异或(^)运算

异或运算的时间复杂度为 O ( 1 ) O(1)O(1),因为它是一个按位操作,仅需常数时间。基本性质:交换律、结合律、自反性等。应用场景:交换变量、查找唯一数、判断符号等。优势:高效、简洁,特别适用于数组、整数处理相关问题。理解和熟练运用异或操作,对于掌握算法优化、数论相关题目非常重要。
原创
博文更新于 2025.04.24 ·
1225 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏

Java并发编程之CompletableFuture原理与实践

在Java并发编程中,CompletableFuture是一个强大而灵活的工具。今天,我们将深入探讨它的实现原理、最佳实践,以及面试中的重要考点。CompletableFuture是Java并发编程中的重要工具,它通过巧妙的设计提供了强大的异步编程能力。深入理解其实现原理掌握正确的使用方式注意性能优化实践异常处理合理进行任务编排相关材料CompletableFuture原理与实践-外卖商家端API的异步化。
原创
博文更新于 2025.04.24 ·
633 阅读 ·
13 点赞 ·
0 评论 ·
19 收藏

Java虚拟机之GC收集器对比解读

Java 虚拟机提供了多种垃圾收集器(Garbage Collector, GC),每种收集器都有其特定的设计目标和适用场景。JVM 的垃圾收集器主要分为两大类:分代收集器和分区收集器,分代收集器的代表是 CMS,分区收集器的代表是 G1 和 ZGC,下面我们来看看这两大类的垃圾收集器。
原创
博文更新于 2025.04.22 ·
681 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

Java虚拟机之JVM垃圾回收机制(GC)

JVM的垃圾回收机制:GC,是Java提供的对于内存自动回收的机制。
原创
博文更新于 2025.04.22 ·
1154 阅读 ·
15 点赞 ·
0 评论 ·
9 收藏

Java虚拟机之JVM内存模型

Java内存模型(Java Memory Model ,JMM)是jvm的一种规范,定义了jvm的内存模型。它屏蔽了各种硬件和操作系统的访问差异,不像c那样直接访问硬件内存,相对安全很多,它的主要目的是解决由于多线程通过共享内存进行通信时,存在的本地内存数据不一致、编译器会对代码指令重排序、处理器会对代码乱序执行等带来的问题。可以保证并发编程场景中的原子性、可见性和有序性。
原创
博文更新于 2025.04.22 ·
1158 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

Java 并发编程之synchronized

在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性。在JDK1.5之前,Java是依靠Synchronized关键字实现锁功能来做到这点的。Synchronized是JVM实现的一种内置锁,锁的获取和释放是由JVM隐式实现。到了JDK1.5版本,并发包中新增了Lock接口来实现锁功能,它提供了与Synchronized关键字类似的同步功能,只是在使用时需要显式获取和释放锁。
原创
博文更新于 2025.04.22 ·
1285 阅读 ·
26 点赞 ·
0 评论 ·
22 收藏

Java并发编程之ReentrantLock

ReentrantLock 是 Java 并发编程中一种重要的同步机制,它比传统的 synchronized 提供了更高的灵活性和功能。下面将从 ReentrantLock 的基本原理、详细使用方法、内部实现机制、注意事项等方面详细说明。ReentrantLock 是基于可重入的概念设计的锁。当一个线程已经获取了 ReentrantLock 锁,它可以再次进入该锁的同步代码块而不会陷入死锁。这是因为 ReentrantLock 记录了每个线程获取锁的次数,并允许同一线程多次获取它。线程获取锁的次数与释放锁的
原创
博文更新于 2025.04.22 ·
666 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

Java并发编程之AQS

AQS是AbstractQueueSynchronizer是缩写,其意思就是抽象队列同步器。原理就是通过一个FIFO队列维护一个state同步状态值,只需要继承该抽象类重写对应的方法便可实现一套线程同步机制。AQS抽象类在java.util.concurrent.locks包下定义。如上图所示,AQS属于一个抽象类,主要是用来构建锁结构以及同步器的一个抽象类。AQS继承了AbstractOwnableSynchronizer,其作用为设置和获取独占锁的拥有者线程方法。
原创
博文更新于 2025.04.22 ·
2119 阅读 ·
43 点赞 ·
0 评论 ·
14 收藏

Java并发编程之ThreadLocal认识和原理

通过当前线程对象 thread 获取该 thread 所维护的 ThreadLocalMap,如果 ThreadLocalMap 不为 null,则以 ThreadLocal 实例为 key,值为 value 的键值对存入 ThreadLocalMap,若 ThreadLocalMap 为 null 的话,就新建 ThreadLocalMap,然后再以 ThreadLocal 为键,值为 value 的键值对存入即可。
原创
博文更新于 2025.04.22 ·
1013 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

Java并发编程之ConcurrentHashMap的原理和使用

‌ConcurrentHashMap(CHM)‌ 是 Java 并发包中实现线程安全的哈希表,其核心设计目标是‌在高并发场景下兼顾性能与线程安全‌。与 HashTable 的全表锁不同,CHM 通过‌分段锁(JDK7)‌和‌CAS+synchronized细粒度锁(JDK8+)‌ 实现高效并发控制,解决了传统同步容器的性能瓶颈‌。锁粒度细化‌:从分段锁(JDK7)到桶锁(JDK8)的演进‌;无锁化设计‌:CAS操作降低线程阻塞概率‌;数据结构优化‌:红黑树替代长链表提升查询效率‌;
原创
博文更新于 2025.04.22 ·
1128 阅读 ·
12 点赞 ·
0 评论 ·
28 收藏

Java并发编程之可见性、原子性和有序性

可见性是一个线程对共享变量的修改,另一个线程能够立刻看到,如果不能立刻看到,就可能会产生可见性问题。在单核CPU上是不存在可见性问题的,可见性问题主要存在于运行在多核CPU上的并发程序。归根结底,可见性问题还是由CPU的缓存导致的,而缓存导致的可见性问题是导致诸多诡异的并发编程问题的“幕后黑手”之一。我们只有深入理解了缓存导致的可见性问题,并在实际工作中时刻注意避免可见性问题,才能更好的编写出高并发程序。
原创
博文更新于 2025.04.22 ·
435 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏
加载更多