对话织信:聊聊它与 Dify (Agentic)工作流开发平台的区别与联系

在AI与低代码深度融合的赛道上,织信的进阶之路颇具代表性。从早期的传统低代码平台,到如今的AI企业级低代码标杆,织信用数年时间完成了一次关键跨越。不少人会好奇:

  • 织信和当下热门的Dify到底有什么不同?
  • 它从低代码向AI企业级低代码转型的过程中,又经历了哪些关键节点?

本期我们对话织信创始人杜总,复盘织信的转型历程,拆解它与Dify的核心差异,探寻其背后的决策逻辑。

(访谈内容2万多字,本内容为访谈精简整理版,约4000字,供参考!)

主持人:现在很多人会把织信和Dify放在一起讨论,你觉得两者最核心的区别是什么?毕竟都是AI相关的企业级工具。

杜总:最本质的区别,在于核心定位和服务的业务场景完全不同。如果用一个简单的光谱来划分,最左边是聚焦AI应用搭建的工具,最右边是深耕企业全链路业务落地的平台,那Dify更偏向左边,而织信则稳稳站在右边。

具体来说,Dify的核心能力集中在AI应用的快速搭建,比如知识库问答、简单工作流编排,更偏向“AI工具搭建器”的属性,服务的场景相对轻量化。而织信的起点是低代码,核心是解决企业复杂的业务流程落地问题,AI是我们赋能低代码的关键能力,最终目标是让企业能通过低代码+AI的方式,快速构建适配自身需求的企业级系统,比如生产管理、客户管理、项目协同等全链路场景。

简单讲,Dify是“用AI做工具”,织信是“用AI赋能企业业务系统”,服务的用户群体和解决的核心痛点完全不同。Dify可能更适合需要快速搭建轻量化AI应用的团队,而织信则聚焦于有复杂业务流程、需要打通多系统数据、实现规模化AI落地的企业。

主持人:明白了,核心定位的差异决定了两者的发展路径。那我们把话题拉回织信本身,当初为什么决定从传统低代码向AI企业级低代码转型?这个决策是基于什么判断?

杜总:其实这个转型不是突然的,而是我们对市场需求的长期观察和验证的结果。可以梳理一下我们的时间线,大概分为三个阶段。

第一阶段是2019-2022年,这是织信的传统低代码阶段。当时低代码赛道刚兴起,市场需求主要集中在“快速开发”——企业需要摆脱传统代码开发的高成本、慢周期,快速搭建一些基础的业务系统,比如表单管理、简单的审批流程。这个阶段我们的核心目标是把低代码的“易用性”和“灵活性”做扎实,让非技术人员也能参与到系统搭建中。

第二阶段是2022年底-2023年,是AI探索期。这个阶段我们明显感觉到市场需求变了:企业不再满足于“能快速搭系统”,更希望“搭出来的系统能更智能”。比如,传统的客户管理系统需要人工录入客户信息、分析跟进记录,效率很低。企业希望能通过AI自动提取客户信息、生成跟进摘要、预测成交概率。

当时我们做了大量的客户调研,发现超过60%的企业客户都有类似的需求。同时,我们也注意到,单纯的低代码平台已经遇到了瓶颈——只能解决“搭建”问题,无法解决“智能赋能”的问题。而AI技术的成熟,正好给了我们突破这个瓶颈的机会。所以在2023年初,我们正式确定了“AI+低代码”的转型方向,开始在低代码平台中融入AI能力。

第三阶段是2024年至今,AI企业级低代码成型期。这个阶段我们完成了从“低代码+AI功能”到“AI企业级低代码平台”的跨越。区别在于,前者是把AI作为附加功能嵌入,后者是把AI作为核心能力,贯穿于系统搭建、数据处理、流程优化的全链路。比如,我们推出的AI原生表单,能自动识别表单字段类型、生成校验规则;AI流程引擎能根据业务场景自动推荐流程节点,甚至在流程执行过程中智能预警风险。

主持人:在转型过程中,有没有遇到过质疑?比如,有人会不会觉得“低代码加AI只是噱头”,或者“你们的核心壁垒在哪里”?

杜总:肯定有,尤其是在2023年刚转型的时候。当时最常见的质疑就是“低代码和AI的结合到底有没有实际价值”,还有人会问“你们和那些单纯做AI工具的平台比,优势在哪里”。

其实,我们当时的判断很明确:AI不能脱离业务场景空谈,低代码是AI落地企业业务的最佳载体。因为企业的核心需求是“解决业务问题”,而不是“拥有一个AI工具”。如果AI不能融入到企业的现有业务流程中,再好的技术也只是摆设。

至于壁垒,核心在于我们多年积累的企业级服务经验和对业务场景的深度理解。传统低代码阶段,我们服务了上千家不同行业的企业,从制造、零售到医疗、政务,清楚地知道不同行业的业务痛点和流程特点。比如制造企业的生产流程管理,需要打通设备数据、物料数据、人员数据;零售企业的客户管理,需要整合线上线下的消费数据。这些行业Know-How不是短时间能积累的。

而AI能力的融入,正是建立在这些Know-How的基础上。我们不是简单地把AI模型丢给用户,而是针对不同行业的场景,预制了对应的AI解决方案。比如给制造企业提供“AI生产质量检测”模板,给零售企业提供“AI客户分层运营”模板,用户可以直接基于这些模板快速搭建系统,而不需要自己去调教模型、设计流程。这就是我们的核心壁垒——“行业Know-How+AI+低代码”的深度融合。

主持人:转型过程中,有没有哪些关键的决策或动作,现在回头看觉得是“做对了”的?

杜总:有两个关键决策,现在看起到了决定性作用。

第一个是“坚持企业级定位,不做轻量化工具”。2023年的时候,很多同行都在做轻量化的AI低代码工具,比如面向个人或小团队的表单工具、协作工具,因为这类产品研发周期短、上线快。但我们坚持聚焦企业级场景,哪怕研发周期更长、投入更大。因为我们判断,企业级市场的需求更刚性、更持久,而且一旦建立信任,客户粘性会很高。事实证明这个判断是对的,现在我们的客户中,超过80%都是中大型企业,而且复购率很高。

第二个是“模型中立+生态开放”。我们没有绑定某一个特定的AI模型,而是支持接入主流的开源模型和闭源模型,比如GPT、文心一言、通义千问,还有一些行业专用的开源模型。同时,我们还开放了API接口,支持用户接入自己的私有模型和第三方系统。

这个决策在当时也有争议,有人觉得“绑定主流模型能降低研发成本”。但我们考虑到,企业客户的需求是多样化的,有的客户关注数据安全,需要部署私有模型;有的客户需要特定行业的模型能力。如果我们绑定单一模型,就会限制客户的选择。而“模型中立+生态开放”的策略,让我们能适配不同客户的需求,也让我们的平台更有生命力。比如有一家制造企业,之前已经部署了自己的工业AI模型,通过我们的开放接口,很顺利地把这个模型融入到了织信的低代码系统中,实现了生产流程的智能化改造。

主持人:现在织信的AI企业级低代码平台,已经落地了哪些比较有代表性的客户案例?这些案例能体现出哪些价值?

杜总:有很多,比如一家大型装备制造企业,用我们的平台搭建了“AI智能生产管理系统”。这个系统整合了生产设备数据、物料数据、人员数据,通过AI模型实时监控生产过程中的异常情况,比如设备故障预警、物料短缺预警,还能自动生成生产进度报告。上线后,他们的生产效率提升了30%,设备故障率降低了40%。

还有一家连锁零售企业,用我们的平台搭建了“AI客户运营系统”。系统通过AI分析客户的消费记录、浏览行为,自动给客户分层,生成个性化的营销方案。比如对高价值客户推送专属优惠,对流失风险高的客户推送召回活动。上线后,他们的客户复购率提升了25%,营销费用降低了18%。

这些案例的核心价值,其实就是“降本增效+业务创新”。通过低代码的快速搭建能力,降低了系统开发的成本和周期;通过AI的智能赋能,提升了业务流程的效率和决策的准确性。而且最重要的是,这些系统都是基于企业的实际业务场景搭建的,完全适配企业的需求,这是通用型软件无法替代的。

主持人:站在现在这个节点,你怎么看待AI企业级低代码的未来?织信接下来的方向是什么?

杜总:我认为AI企业级低代码是未来企业数字化转型的核心方向。现在很多企业都面临“数字化转型难”的问题,要么是缺乏专业的技术团队,要么是现有系统无法适配业务变化,要么是AI技术落地成本太高。而AI企业级低代码平台,正好解决了这些问题——它降低了技术门槛,让非技术人员也能参与系统搭建;它具备灵活性,能快速适配业务变化;它整合了AI能力,降低了AI落地的成本。

接下来,织信的核心方向是“深化行业解决方案+提升AI原生能力”。一方面,我们会针对更多细分行业,比如医疗、教育、政务,打造更精准的AI低代码解决方案,把行业Know-How沉淀得更深厚;另一方面,我们会持续提升平台的AI原生能力,比如增强AI的流程自动化、智能决策、多模态交互等能力,让系统更智能、更好用。

主持人:最后,很多创业者和产品人都很关注织信的发展,你有没有什么经验可以分享?

杜总:核心就两个字:专注。现在AI赛道很热闹,每天都有新的技术、新的概念出现,很容易让人迷失方向。但我们从成立到现在,始终专注于“企业级低代码”这个赛道,哪怕中间有很多诱惑,也没有偏离方向。

另外,要坚持以客户需求为中心。产品的价值最终要由客户来验证,所以我们一直保持和客户的紧密沟通,从客户的反馈中寻找产品迭代的方向。很多核心功能,比如AI流程预警、模型中立,都是来自客户的需求。

最后,要有耐心。企业级产品的成长周期很长,不可能一蹴而就。我们从传统低代码到AI企业级低代码,用了整整三年时间,中间经历了很多挑战,但我们始终相信这个方向是对的,所以一直坚持下来。现在看来,所有的坚持都是值得的。

主持人:感谢你的分享。相信织信的创新历程,能给很多在AI和低代码赛道的创业者带来启发。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值