nice七仔爱地球
码龄8年
求更新 关注
提问 私信
  • 博客:242,071
    社区:1
    242,072
    总访问量
  • 36
    原创
  • 7,894
    粉丝
  • 67
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
加入CSDN时间: 2017-11-09
博客简介:

李鑫玉的博客

博客描述:
本博客主要用于记录一些自己工作中实际用到的东西及踩过的坑等,用于个人查阅,同时希望能够帮助到其他人。
查看详细资料
个人成就
  • 获得170次点赞
  • 内容获得81次评论
  • 获得969次收藏
  • 代码片获得1,881次分享
  • 博客总排名1,524,010名
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 4篇
    2021年
  • 12篇
    2020年
  • 11篇
    2019年
  • 16篇
    2018年
成就勋章
TA的专栏
  • 数据集展示
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习神经网络tensorflow
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Centos7 glibc库升级到2.23(实测可行)

注意:Centos 为了稳定使用的glibc版本通常比较低。而安装有些程序需要依赖新版本。升级glibc需要慎重,因很多人升级失败后导致系统不能用了。本人亲测,升级了多台机器,全部升级成功。glibc简介glibc是GNU发布的libc库,即c运行库。glibc是linux系统中最底层的api,几乎其它任何运行库都会依赖于glibc。glibc除了封装linux操作系统所提供的系统服务外,它...
原创
博文更新于 2024.09.14 ·
9796 阅读 ·
5 点赞 ·
14 评论 ·
15 收藏

Windows下使用pip安装包 出错 TLS/SSL

1] 需要将anaconda3的路径换成你电脑上的路径,这里是我的电脑上anaconda的安装路径;[2] 这里应该只适用于Anaconda的环境,其他可能不适用。
原创
博文更新于 2024.09.14 ·
706 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

python程序docker化部署

常用命令记录:启动dockersystemctl start docker #启动dockersystemctl enable docker #开机启动dockersystemctl status docker #查看docker状态
原创
博文更新于 2022.09.09 ·
884 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

人工智能钢筋计数数据集(训练集201-300)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(训练集301-400)

发布资源 2022.07.12 ·
rar

人工智能钢筋盘点计数数据集(1-100)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(训练集401-500)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(训练集501-569)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(测试集1-85)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(标注文件)

发布资源 2022.07.12 ·
rar

人工智能钢筋计数数据集(训练集101-200)

发布资源 2022.07.12 ·
rar

钢筋盘点计数数据集图片展示

钢筋盘点计数数据集展示,供资源下载的朋友查看图片质量
原创
博文更新于 2022.07.12 ·
1212 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

Tensorflow简单项目讲解

Tensorflow简单项目讲解这里对Tensorflow就不在做具体介绍了,直接切入正题。这是我毕业时做的一个毕业设计,基本实现方式就是通过自己通过爬虫等方式从网上获取数据集,然后对数据集进行清洗等工作,搭建深度神经网络进行训练,最后将训练好的模型用到一个python编写的GUI界面上,实现对输入图片的识别。 最后的识别效果如下图: 接下来我们来看一下具体实现。第一步,数...
原创
博文更新于 2021.09.14 ·
8120 阅读 ·
17 点赞 ·
17 评论 ·
72 收藏

jetson nano Docker化部署

Docker化部署一、运行时检查及配置1、检查 docker 配置是否为可用的运行时:docker info | grep Runtime此处的结果不一致也没有关系,因为这里我已经配置好了,接着往下走2、使用一个简单的运行时运行GPU容器,理想结果输出会是 Result=FAILdocker run -it jitteam/devicequery ./deviceQuery3、修改docker配置文件, 设置nvidia为默认运行时vi /etc/do...
原创
博文更新于 2021.07.24 ·
4144 阅读 ·
1 点赞 ·
4 评论 ·
28 收藏

逻辑回归Logistic Regression

机器学习总结之逻辑回归Logistic Regression逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法。简单的说回归问题和分类问题如下:回归问题:预测一个连续的输出。分类问题:离散输出,比如二分类问题输出0或1.逻辑回归常用于垃圾邮件分类...
转载
博文更新于 2021.04.21 ·
306 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Docker安装.docx

发布资源 2021.03.15 ·
docx

jetson nano配置过程中踩过的坑

一、更换源地址后apt-get update出错解决办法:进入桌面,打开设置 ------软件更新---------勾选所有选项,再次运行更新命令二、python3及pip安装sudo apt-get install python3-dev python3-pip三、安装h5py报错,无法编译首先使用pip3 list查看是否已经安装cython,numpy,如果已经安装请卸载然后,apt-get install python3-numpy # 安装numpy...
原创
博文更新于 2021.03.13 ·
2309 阅读 ·
2 点赞 ·
0 评论 ·
18 收藏

Win10家庭版Docker Desktop Installer 方式安装Docker遇到的问题及解决方法(转)

二、Docker win10只支持专业版,家庭版安装会报Installation failed:one pre-requisite is not fullfilled错误,解决方法如下:        新建hyperv.cmd,编辑内容如下,以管理员身份运行,遇到下载进度卡着不动可按回车继续。。执行完后会提示重启电脑:Y。pushd "%~dp0"dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hy
转载
博文更新于 2021.03.10 ·
4218 阅读 ·
2 点赞 ·
3 评论 ·
7 收藏

图片与base64串的各种转换

一、flask接收application/json数据request.get_json()二、本地文件转base64串f = open("000_0.bmp", 'rb')b64 = base64.b64encode(f.read()).decode()三、base64串转numpy数组pic_str = base64.b64decode(pic_b64)img = cv2.imdecode(np.fromstring(pic_str, np.uint8), 1)四、nu
原创
博文更新于 2021.02.24 ·
420 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ERROR: Could not build wheels for cryptography which use PEP 517 and cannot be installed directly

Note: When installing in a non-Anaconda environment, make sure to install the Protobuf compiler before running the pip installation of onnx. For example, on Ubuntu:sudo apt-get install protobuf-compiler libprotoc-devpip install onnx
原创
博文更新于 2020.05.15 ·
20682 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏
加载更多