图灵的猫.
码龄8年
求更新 关注
提问 私信
  • 博客:6,412,209
    社区:721
    问答:1,456
    动态:140
    6,414,526
    总访问量
  • 245
    原创
  • 7,470
    粉丝
  • 30
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2017-07-15

个人简介:给行业以ai,而不是给ai以行业

博客简介:

Machine Learning with Tutors

博客描述:
分享机器学习,数学,统计和编程干货
查看详细资料
个人成就
  • 领域专家: 物联网技术领域
  • 获得4,614次点赞
  • 内容获得872次评论
  • 获得14,592次收藏
  • 代码片获得6,849次分享
  • 博客总排名584,404名
创作历程
  • 1篇
    2021年
  • 31篇
    2020年
  • 7篇
    2019年
  • 206篇
    2018年
  • 28篇
    2017年
成就勋章
TA的专栏
  • 「AI科普」
    3篇
  • 「三分钟系列」数据结构与算法
    6篇
  • 有趣的算法
    14篇
  • 机器学习与数据挖掘
    17篇
  • 深入浅出数据库与Mysql
    2篇
  • C语言入门
    5篇
  • JavaSE
    9篇
  • Linux私房菜
    8篇
  • 用Python玩转数据
    3篇
  • Hadoop遇见Spark
  • ***大数据框架***
    11篇
  • Hadoop/Spark
    15篇
  • Mysql数据库
    16篇
  • NoSql数据库
    11篇
  • ***Data Science***
    42篇
  • Data Science:统计学习
    68篇
  • Data Science:数据挖掘
    40篇
  • Data Science:机器学习
    70篇
  • Data Science:线性代数
    12篇
  • Data Science:数学分析
    20篇
  • Data Sciense:数值优化
    7篇
  • Data Science:深度学习
    14篇
  • Data Science:图像识别
    8篇
  • Data Science:NLP相关
    9篇
  • ***算法与编程艺术***
    35篇
  • 算法之数据结构
    19篇
  • 算法之离散数学
    8篇
  • 编程之美:C/C++
    21篇
  • 编程之美:Python
    46篇
  • 编程之美:Java
    9篇
  • ***系统与网络***
    22篇
  • 系统:Linux与Shell
    10篇
  • 网络:TCP/IP协议
    5篇
  • 系统:编译与底层
    6篇
  • **Leetcode刷题修炼手册**
    10篇
  • 编程之美:Scala
    4篇
兴趣领域 设置
  • 人工智能
    机器学习
About Me
我的Github
RSS3开源项目
大数据研究院
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 帖子

  • 社区

搜索 取消

Kronecker克罗内克积

发布资源 2018.05.26 ·
pdf

「01」机器学习与深度学习,到底在学些什么?

根据定义,学习是从有限的例子中,找出问题和答案之间规律的一个过程,而所找出的规律叫做知识,而知识,在我们的意识层面上叫做知识,但在数学层面,它的名字叫做模型。经过千万年的进化,人类已经可以熟练利用大脑神经元所组成的生物记忆网络,将感官收集到的信号,如图像、物体、声音、文字,通过长短期的记忆机制进行保存。通过这些信息,大脑会推演出下一个类似情况、问题发生时,我们该做出的反应。这些反应有先天的,比如面对狮子时,我们的祖先遗留下来的对死亡的基因恐惧,驱使大脑发出逃离的指令。...
原创
博文更新于 2023.08.15 ·
5013 阅读 ·
14 点赞 ·
3 评论 ·
47 收藏

3分钟Tips:用大白话告诉你什么是低耦合|高内聚

耦合当然也可以这样简单的理解,我想懂电脑的应该都知道,CPU与主板之间的关系,CPU如果是特殊的CPU必须使用特殊的主板来支持,那么如果说这个CPU不唯一依赖唯一主板,那么就认为这个CPU与主板的关系是低耦合的关系。那么外界模块不关心支付系统模块的变化,只需要调用接口即可,如果具体的支付方式,比如支付宝的方式发生改变,在调用支付服务的模块中也不需要做任何的修改就可以正常的提供服务。低内聚的模块设计的坏处有:首先模块的功能不单一,模块的职责不明确,比较松散,更有甚者是完成不相关的功能。果细化到具体的实现呢?
原创
博文更新于 2022.09.19 ·
51936 阅读 ·
51 点赞 ·
10 评论 ·
187 收藏

对全连接层(fully connected layer)的通俗理解

全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积,h和w分别为前层卷积结果的高和宽。全连接的核心操作就是矩阵向量乘积 y = Wx。
原创
博文更新于 2022.09.18 ·
272798 阅读 ·
194 点赞 ·
27 评论 ·
747 收藏

别怕,“卷积“其实很简单

首先给大家讲一个关于卷积的小故事:小明是杭州某互联网大厂的员工,每天996十分辛苦,但小明最近爱上了打台球,经常不在工位。这天,小明的主管让小明改一个需求,小明却到楼下找产品部小丽打台球去了,被主管发现,他非常气愤,扇了小明一巴掌(注意,这就是输入信号,脉冲)。于是小明脸上会渐渐地(贱贱地)鼓起来一个包,小明的脸就是一个系统,而鼓起来的包就是小明的脸对巴掌的响应。好,这样就和信号系统建立起来意义对应的联系。
原创
博文更新于 2022.09.18 ·
214546 阅读 ·
316 点赞 ·
32 评论 ·
959 收藏

python中的struct

struct是python(包括版本2和3)中的内建模块,它用来在c语言中的结构体与python中的字符串之间进行转换,数据一般来自文件或者网络。
原创
博文更新于 2022.09.18 ·
956 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

经典:一文详解socket

上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。
原创
博文更新于 2022.09.18 ·
945 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

3分钟tips:Python中的range与xrange

另外,xange也和普通的生成器略有不同,对于同一个xrange对象,对它进行多次迭代,每次都会从头开始,这里我自己也试了一下。这里就是很明显的类型上的不同了,range直接生成一个列表,xrange生成的是一个xrange对象。在其它场合,我觉得xrange完全可以取代range,这样你可以无需担心列表长度的问题。可以看到元素被生成出来之后就从生成器中剔除了,但是xrange有所不同。另外一个很明显的区别在与xrange不支持列表切片。迭代两次,每次都是从第一个元素开始....
原创
博文更新于 2022.09.18 ·
781 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Linux学习笔记(四):VI编辑器与常用命令

什么是VI?VI是Linux/Unix下标配的一个纯字符界面的文本编辑器。由于不支持鼠标功能,也没有图形界面,相关的操作都要通过键盘指令来完成,需要记忆大量命令。因此很多人不大喜欢它,但同时由于键盘的方式往往比鼠标来得快,一旦熟练后用起来是有种非常流畅的感觉的,也有人因此而非常喜欢它。不管你喜欢也好,不喜欢也好,VI是Linux的标配编辑器,很多时候你也只有这一个编辑器可用,如果要做一个Linux Coder,熟悉VI还是非常有必要的。
原创
博文更新于 2022.09.18 ·
815 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

机器学习实战系列(六):Adaboost提升法

目前刚开始做,有不对的欢迎指正,也欢迎大家star。除了 版本差异,代码里的部分函数以及代码范式也和原书不一样(因为作者的代码实在让人看的别扭,我改过后看起来舒服多了)。在这个系列之后,我还会写一个scikit-learn机器学习系列,因为在实现了源码之后,带大家看看SKT框架如何使用也是非常重要的。Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机;机器学习面试中也会经常提问到Adaboost的一些原理;
原创
博文更新于 2022.09.18 ·
974 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

一文详解Python正则表达(3.X版本)

本节我们看一下正则表达式的相关用法,正则表达式是处理字符串的强大的工具,它有自己特定的语法结构,有了它,实现字符串的检索、替换、匹配验证都不在话下。当然对于爬虫来说,有了它,我们从HTML里面提取我们想要的信息就非常方便了。
原创
博文更新于 2022.09.18 ·
789 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习:提升算法之Adaboost

说了这么多,也举了这么多例子,就是为了让你从细节上明白Adaboost的基本原理,博主认为理解Adaboost的两种权重的关系是理解Adaboost算法的关键所在。
原创
博文更新于 2022.09.18 ·
1555 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

C/C++面试宝典:虚函数与纯虚函数

参考《C/C++程序员面试宝典》
原创
博文更新于 2022.09.18 ·
875 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

集成学习:Boosting与Bagging

根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器间存在强依赖关系、必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系、可同时生成的并行化方法;而在RF中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分. 随机森林简单、容易实现、计算开销小.效果能使得最终集成的泛化性能可通过个体学习器之间差异度的增加而进一步提升.Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重.
原创
博文更新于 2022.09.18 ·
864 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python中函数的形参与按值传递之间的关系

我对python还不够熟悉 , 但是从近两天的学习中发现 , 其存储模型与java相似 , 即变量中存储的是引用 , 是指向真正内容的内存地址(当然 ,java中的八大基本数据类型 , 变量名和值都是存储在堆栈中的 ) , 对变量重新赋值 , 相当于修改了变量副本存储的内存地址 , 而这时的变量已经和函数体外的变量不是同一个了, 在函数体之外的变量 , 依旧存储的是原本的内存地址 , 其值自然没有发生改变 .- 在函数体中改变变量指向的堆中的值 , 对函数外变量有效.
原创
博文更新于 2022.09.18 ·
959 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

深入浅出带你了解Python2与Python3的异同

next()(.next())是一种常用的函数(方法),这是另一种语法更改(或者说在执行时更改)值得一提:在Python2.7.5中你可以使用next()函数和.next()方法,在Python3只保留了next()函数(调用.next()方法会引发AttributeError异常)。因为它们实现了相同的方式,就会有相同的速度。在Python3中,range()实现了类似xrange()的功能,因此专门的xrange()函数不存在了(在Python3中使用xrange()会抛出一个NameError异常。
原创
博文更新于 2022.09.18 ·
1026 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

面向对象之Python的链表实现(二)循环链表

接上一章的练习,这里接着实现单链表的变型——传说中的循环单链表。给出一个简单的类,构造4个功能并实例化测试。在下一篇文章中将会关注一个比较tricky的问题:如何判断链表有环?
原创
博文更新于 2022.09.18 ·
703 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java中的内部类与匿名内部类

在内部类中的属性和外部方法的参数两者从外表上看是同一个东西,但实际上却不是,所以他们两者是可以任意变化的,也就是说在内部类中我对属性的改变并不会影响到外部的形参,而然这从程序员的角度来看这是不可行的,毕竟站在程序的角度来看这两个根本就是同一个,如果内部类该变了,而外部方法的形参却没有改变这是难以理解和不可接受的,所以为了保持参数的一致性,就规定使用final来避免形参的不改变。匿名内部类由于没有名字,所以它的创建方式有点儿奇怪。匿名内部类不能是抽象的,它必须要实现继承的类或者实现的接口的所有抽象方法。
原创
博文更新于 2022.09.18 ·
516 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数据结构与算法(二):线性表、栈、树(二叉树,AVL树)、图

树型结构是一类非常重要的非线性数据结构,其中以树和二叉树最为常用。在介绍二叉树之前,我们先简单了解一下树的相关内容。树树 是由n(n>=1)个有限节点组成一个具有层次关系的集合。它具有以下特点:每个节点有零个或多个子节点;没有父节点的节点称为 根 节点;每一个非根节点有且只有一个 父节点 ;除了根节点外,每个子节点可以分为多个不相交的子树。树的结构二叉树基本概念 定义二叉树是每个节点最多有两棵子树的树结构。通常子树被称作“左子树”和“右子树”。二叉树常被用于实现二叉查找树和二叉堆。相关
原创
博文更新于 2022.09.18 ·
1269 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

初识数据库——Mysql入门

总的来说,数据库系统是由数据库,数据库管理系统DBMS以及数据库应用程序组成的对数据进行运作和储存的系统。此外,数据库的建立和维护也需要依赖人的帮助,这就需要数据库管理员(DBA)的存在。通常的数据库都是作为信息系统的核心与基础存在,从OLTP到OLAP甚至GIS,数据库的应用都遍布各处。数据库中存在很多不同的结构类型,有网状,层次,关系等。根据教材的定义:数据库是长期储存在计算机内,有组织的,可共享的大量数据集合。顾名思义,数据库是用来管理数据的储存仓库,还包括应用以及设计的技术,是CS的重要分支。
原创
博文更新于 2022.09.18 ·
988 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多