Moresweet猫甜
码龄9年
求更新 关注
提问 私信
  • 博客:591,580
    社区:3,950
    问答:12,058
    动态:32,617
    640,205
    总访问量
  • 178
    原创
  • 4,528
    粉丝
  • 110
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2017-05-19

个人简介:北京航空航天大学博士在读,CSDN人工智能领域新星创作者,百度飞桨领航团团长,湖北省制造企业智能管理工程技术研究中心智能硬件组负责人,红帽国际认证工程师、系统管理员,兴趣方向为机器人、自动驾驶,希望能够通过积累厚积薄发,利用好自己拥有的资源比争取好资源更加重要。

  • 毕业院校: 北京航空航天大学
博客简介:

Moresweet 猫甜

博客描述:
蝇随骥尾,得以绝群;逆流而上,不进则退
查看详细资料
个人成就
  • 新星创作者: 人工智能技术领域
  • 获得2,091次点赞
  • 内容获得1,725次评论
  • 获得5,067次收藏
  • 代码片获得17,674次分享
  • 博客总排名14,730名
  • 原力等级
    原力等级
    7
    原力分
    4,033
    本月获得
    11
创作历程
  • 1篇
    2025年
  • 23篇
    2024年
  • 36篇
    2023年
  • 26篇
    2022年
  • 24篇
    2021年
  • 4篇
    2020年
  • 5篇
    2019年
  • 20篇
    2018年
  • 50篇
    2017年
成就勋章
TA的专栏
  • EmboiedAI
    8篇
  • 算法
    12篇
  • 科研
    9篇
  • CV学习
    27篇
  • webots
    1篇
  • Boost库
    4篇
  • 机器视觉
    2篇
  • 数据结构学习实践项目
    43篇
  • 日常问题
    35篇

TA关注的专栏 9

TA关注的收藏夹 0

TA关注的社区 12

TA参与的活动 9

兴趣领域 设置
  • 人工智能
    机器学习深度学习tensorflow
  • 嵌入式
    stm32
  • 硬件开发
    硬件工程pcb工艺
  • 前沿技术
    机器人
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Openmanus复现教程:打造自己的Agent助手

摘要: OpenManus是一款开源AI开发辅助工具,可替代Manus实现代码生成与任务自动化。本文提供详细复现教程:1) 通过Anaconda创建Python 3.12虚拟环境;2) 克隆GitHub源码并安装依赖;3) 配置config.toml文件;4) 输入自然语言需求(如"生成DDPG训练代码")获得完整代码框架;5) 在workspace中安装依赖并成功运行生成代码。实测显示,生成的DDPG算法能有效训练Gym环境模型,实现"需求→代码→执行"全流程闭环,
原创
博文更新于 2025.09.03 ·
961 阅读 ·
43 点赞 ·
0 评论 ·
31 收藏

pytorch多GPU训练教程

首先打乱数据顺序,然后用 11/2 =6(向上取整),然后6乘以GPU个数2 = 12,因为只有11个数据,所以再把第一个数据(索引为6的数据)补到末尾,现在就有12个数据可以均匀分到每块GPU。BatchSampler原理: DistributedSmpler将数据分配到两个GPU上,以第一个GPU为例,分到的数据是6,9,10,1,8,7,假设batch_size=2,就按顺序把数据两两一组,在训练时,每次获取一个batch的数据,就从组织好的一个个batch中取到。
原创
博文更新于 2025.07.28 ·
3236 阅读 ·
22 点赞 ·
2 评论 ·
41 收藏

【日常问题】huggingface git代理解决访问受限(代理方式)

通过代理,可以监控和记录网络流量,检测恶意活动,并提供额外的安全层,如防火墙和入侵检测系统。网络代理是一种充当网络中间人的设备或服务,用于代表用户或设备执行网络请求。此外,代理还可以实施内容缓存,加速对常见资源的访问,减轻网络流量和提高响应速度。通过选择最佳路径,代理可以提高数据传输的效率,并降低延迟。由于这个操作是操作的环境变量,所以对全局生效,如果出现其他问题(例如pip ssl验证失败,记得回退)通过代理服务器,可以对网络流量进行优化,例如使用压缩算法、缓存静态资源等,从而提高整体网络性能。
原创
博文更新于 2025.04.10 ·
11553 阅读 ·
27 点赞 ·
3 评论 ·
39 收藏

【具身智能】目标导航实验复现详细教程

参考论文Object Goal Navigation using Goal-Oriented Semantic Exploration。复现经典机器人顶会视觉目标导航实验,提供细节的过程问题与解决办法,希望可以帮助到人工智能以及机器人领域的研究初学者。
原创
博文更新于 2025.04.08 ·
3800 阅读 ·
43 点赞 ·
27 评论 ·
63 收藏

【具身智能】AI仿真工具-Habitat安装教程

一种灵活的高性能 3D 模拟器,具有可配置代理、多个传感器和通用 3D 数据集处理(内置对 MatterPort3D、 Gibson和其他数据集的支持)。:用于具身智能端到端开发的模块化高级库 - 定义嵌入式人工智能任务(例如导航、指令遵循、问答)、配置嵌入式代理(物理形式、传感器、功能)、训练这些代理(通过模仿或强化学习,或者像经典 SLAM 那样根本不学习),并使用标准指标在定义的任务上对他们的表现进行基准测试。
原创
博文更新于 2025.04.08 ·
13186 阅读 ·
35 点赞 ·
24 评论 ·
89 收藏

Gazebo GPU加速【gzserver running in GPU】

Gazebo仿真帧率极低,fps在10以下,同时显卡驱动已安装,但是跑Gazebo仍然消耗CPU严重。通过nvidia-smi查看,gzserver和gzclient均不在GPU中消耗显存,怀疑GPU未对Gazebo有效工作。本机环境:CPU:12490FGPU:RTX3060(GRAM 12G)GPU Driver:535.104.05CUDA:12.2
原创
博文更新于 2025.01.17 ·
8900 阅读 ·
40 点赞 ·
35 评论 ·
89 收藏

【含源码】基于Carla的跟驰仿真环境设计

本文实现在Carla仿真环境中的跟车模型,具体为在仿真环境中放置两个车辆,前车与后车,通过 Carla API设置前车的自动驾驶模式,然后我们通过编程手段实现后车跟随前车的路线行动,目前有两种手段完成,第一种为使用安全距离以及速度差的方式驱动油门和刹车,逼近方法是PID;跟车主程序实现了自车在复杂交通环境中的跟车行为,通过多种方法检测前车的行驶状态,并根据情况调整自车的控制策略,包括在交叉路口和弯道的特殊处理,以及自动驾驶和手动控制的切换。,其在预定义的位置生成前车和自车。
原创
博文更新于 2024.12.06 ·
1652 阅读 ·
17 点赞 ·
2 评论 ·
34 收藏

ImportError: cannot import name ‘implements‘ from ‘zope.interface‘

中在使用zope.interace中使用了老表达。
原创
博文更新于 2024.12.05 ·
1766 阅读 ·
6 点赞 ·
1 评论 ·
1 收藏

深入剖析梯度弥散以及排查手段

既然梯度传播是靠的求偏导,那么势必算法框架可以找到运算关系,每次计算之后,pytorch会维护计算图,记录下哪一步是谁参与了什么样的计算,计算梯度的时候要根据运算类型来分别处理,以下是打印计算图的代码,以判断你的模型流程是否拥有正确的数据流。就为0,那么就会导致神经元的参数更新为0,根据链式求导法则的传递关系,这会导致级联的0出现,这种“陷阱”的传递对于前面的层的影响也是愈发严重的,参数变化的越来越小,学习就近乎停滞了,这样的现象就是常说的梯度消失也叫梯度弥散。这是判断梯度弥散还是没有梯度的重要标准。
原创
博文更新于 2024.12.05 ·
1180 阅读 ·
23 点赞 ·
0 评论 ·
22 收藏

【Agorversev1.1数据转换】Agorverse高清地图转OpenStreetMap及SUMO路网

在 OSM 中,“Way”通常是由一系列有序的“Nodes”组成的道路中心线。OSM 中的 Way 通常表示线性或多边形特征,例如道路、溪流、森林或湖泊。在 OpenStreetMap (OSM) 中,“Node”是指一个兴趣点,或者是某条线性特征(例如道路)的组成点。然而,在 Argoverse 中,“Way”对应的是车道段的中心线。在 Argoverse 中,一个 LaneSegment 对象由一个 Way 和两个或更多的 Node 组合而成。最终效果:转换的高精地图与原始版本一致。
原创
博文更新于 2024.11.27 ·
1442 阅读 ·
28 点赞 ·
1 评论 ·
12 收藏

Python多进程/多线程通信实例

多线程(Multithreading) 是一种并发执行的编程技术,在一个进程内创建和管理多个线程,每个线程可以独立执行任务。线程是进程中的一个执行单元,多个线程共享进程的资源(如内存、文件句柄等),但可以独立调度和执行。
原创
博文更新于 2024.11.27 ·
1511 阅读 ·
23 点赞 ·
0 评论 ·
25 收藏

/.conda/envs/xxx/compiler_compat/ld: cannot find xxx: 没有那个文件或目录

直接使用本机环境ld,避免anaconda中的繁琐且不好用的路径。替换anaconda中的ld。
原创
博文更新于 2024.10.15 ·
1336 阅读 ·
5 点赞 ·
3 评论 ·
2 收藏

蛙跳扩散模型轨迹预测

采用扩散模型生成轨迹预测的顶会论文,研读并分享方法,借鉴AI结合到轨迹预测方面的最新研究,新兴的扩散模型在众多生成任务中展现了其巨大的表示能力,显示出随机轨迹预测的潜力。
原创
博文更新于 2024.07.24 ·
1778 阅读 ·
31 点赞 ·
0 评论 ·
34 收藏

Ubuntu20.04安装中文百度输入法

在Ubuntu中安装搜狗输入法等基于fcitx的输入法前,可能需要重新安装fcitx源,因为Ubuntu自带的fcitx版本可能与某些输入法不兼容。它允许应用程序不必具体考虑在不同语言环境下的输入问题,系统会根据相应的locale自动寻找合适的输入法。它支持多种输入法,包括拼音(全拼、简拼、双拼)以及基于码表的输入法(如五笔、郑码等)。XIM是一个较老的输入法协议,与现代的输入法框架相比,可能在功能和兼容性方面有所欠缺。fcitx为许多流行的中文输入法(如搜狗输入法)提供了桌面图形环境支持。
原创
博文更新于 2024.07.24 ·
4012 阅读 ·
23 点赞 ·
0 评论 ·
31 收藏

Ubuntu20.04 FUEL与MARSIM实验复现与协同过程记录

根据源码状态有这些"INIT", “WAIT_TRIGGER”, “PLAN_TRAJ”, “PUB_TRAJ”, “EXEC_TRAJ”, “FINISH”看来与么melodic不太相同,这个路径是累加的,当我把自己本地的路径管理器屏蔽掉,然后catkin_make,发现(FUEL)注释掉pcl,pcl仍然在,这里确实有些离谱注释掉仍然可以找到pcl_render的节点,不合逻辑。frontier一直有数据接收,只是数组为空,所以,这个报错应该是暂时定为未运行,轨迹同理。
原创
博文更新于 2024.05.22 ·
1155 阅读 ·
7 点赞 ·
2 评论 ·
20 收藏

Ubuntu20.04 Carla安装以及ros-bridge控制

开启两个终端,一个启动Carla,一个通过ROS控制。runtime导包,在非虚拟环境中安装pygame。创建虚拟环境,避免包依赖破坏读者的原生环境程序。写入用户配置,使得ROS可以找到编译的程序。创建工作空间,拉取源码。改称0.9.15即可。
原创
博文更新于 2024.05.22 ·
2982 阅读 ·
14 点赞 ·
12 评论 ·
32 收藏

机械臂实验入门知识

机械臂的机械机构由一系列刚性构件(连杆)通过链接(关节)联结起来,机械手的特征在于具有用于保证可移动性的臂( arm ),提供灵活性的腕( wrist )和执行机器人所需完成任务的末端执行器( end - effector )。机械臂的运动能力由关节保证。两个相邻连杆的连接可以通过移动关节( prismatic joint)或旋转关节( revolute joint)实现。在一个开式运动链中,每一个移动关节或转动关节都为机械结构提供一个自由度( degrees of freedom , DOF )。
原创
博文更新于 2024.03.17 ·
2751 阅读 ·
11 点赞 ·
5 评论 ·
21 收藏

基于联邦强化学习的集群机器人协同导航

在收集24个激光传感器读数后,将读数归一化到[0,1]之间,并将归一化读数反向,以便当障碍物接近机器人时,归一化传感器读数接近1,从而进行更有效的神经网络训练。由于群居昆虫能够集体完成单个个体无法完成的具有挑战性的任务,因此群体机器人系统有望在动态复杂环境下完成单个机器人难以完成的具有挑战性的任务。在原论文中,SEDDPG的优点是通过共享可以鼓励探索,从而更快收敛和更好的性能。在模拟评价实验中,每个agent在训练阶段使用4个训练模型,在20次以上的环境中平均4个agent的表现,计算出成功率和完成时间。
原创
博文更新于 2024.03.17 ·
3178 阅读 ·
40 点赞 ·
32 评论 ·
53 收藏

喜中CCF分区论文一篇,纪念一下

发布动态 2024.03.17

【具身智能】开放词汇移动操控(OVMM) 实验复现教程(Habitat-challenge2023)

HomeRobot:开放词汇移动操作 (OVMM) 挑战赛的目标是创建一个平台,使研究人员能够开发能够导航陌生环境、操作新颖对象以及从封闭对象类别转向开放词汇自然语言的代理。该挑战赛旨在利用机器学习、计算机视觉、自然语言和机器人技术的最新进展,促进具体人工智能的跨领域研究。本文复现了habitat具身智能挑战赛的实验,希望可以帮到相关研究人员。
原创
博文更新于 2024.03.15 ·
2867 阅读 ·
46 点赞 ·
19 评论 ·
31 收藏
加载更多