K同学啊
码龄9年
求更新 关注
提问 私信
  • 博客:2,754,932
    社区:1,176
    问答:71
    动态:7,626
    视频:326
    2,764,131
    总访问量
  • 542
    原创
  • 87,890
    粉丝
  • 101
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2017-04-10

个人简介:“365天深度学习训练” 报名中,报名微信:mtyjkh_

博客简介:

“365天深度学习训练营”报名进行中~

博客描述:
独立算法工程师|《深度学习100例》作者
查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 领域专家: 数据科学与机器学习技术领域
  • 获得3,827次点赞
  • 内容获得2,085次评论
  • 获得16,108次收藏
  • 代码片获得50,437次分享
  • 博客总排名987,823名
创作历程
  • 11篇
    2024年
  • 61篇
    2023年
  • 117篇
    2022年
  • 217篇
    2021年
  • 57篇
    2020年
  • 17篇
    2019年
  • 68篇
    2018年
成就勋章
TA的专栏
  • 深度学习实战案例(内附源码)
    付费
    65篇
  • 《YOLOv10算法改进实战》
    付费
    24篇
  • 小白训练营
    付费
    28篇
  • TensorFlow入门
    付费
    12篇
  • Pytorch入门
    付费
    11篇
  • 《Python入门100题》
    付费
    80篇
  • 365天深度学习训练营
    2篇
  • 《深度学习100例》Pytorch版
    8篇
  • Pytorch入门手册
    6篇
  • 本科毕设实战案例分享
    1篇
  • YOLOv5解析
    21篇
  • 自然语言处理NLP-实例教程
    8篇
  • 《Matplotlib实例教程》
    29篇
  • 《Pandas实战教程》
    6篇
  • 《小白入门PyTorch》
    3篇
  • 机器学习100天
    18篇
  • 常用小知识点
    1篇
  • Python3工具集合
    7篇
  • 《数据分析实例教程》
    6篇
  • TensorFlow2简单入门
    17篇
  • 有趣的AI
    4篇
  • K童鞋的爬虫笔记
    10篇
  • 公众号:K同学啊
    2篇
  • python笔记
    2篇
  • Frighting的日常
    7篇
  • 深度学习笔记
    8篇
  • 机器视觉
    2篇
  • tensorflow
    10篇
  • 爬虫
    18篇
  • 机器学习
    13篇
  • LeetCode-提供C语言解决方案
    15篇
  • python
    77篇
TA的推广
兴趣领域 设置
  • 人工智能
    计算机视觉深度学习tensorflow
关于我

知识星球 公众号 投稿 投稿 公众号 公众号


探索科学奇迹:为学生提供相关竞赛和英语学习资源的博客【点击我传送】| ChatGPT加持


mao

博主VX:mtyjkh_
请备注来意通过验证,如:合作、资料、进群
粉丝福利 | 资料领取 | 交流学习 | 商务合作

mao

我的微信公众号:
111.png
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 问答
  • 最近

  • 文章

  • 专栏

  • 问答

搜索 取消

新手入门深度学习 | 1-1:配置深度学习环境

.
原创
博文更新于 2024.08.29 ·
6574 阅读 ·
13 点赞 ·
6 评论 ·
103 收藏

YOLOv10涨点改进|引入BoTNet、Ghost与CA注意力机制,打造高效轻量级检测器

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!
原创
博文更新于 2024.07.07 ·
1212 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

YOLOv10涨点改进|添加可变形注意力机制DAttention

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!
原创
博文更新于 2024.07.05 ·
927 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv10改进|改进结合轻量型Ghost模块

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!
原创
博文更新于 2024.07.04 ·
724 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

YOLOv10剪枝|模型轻量化实现方案 - 模型剪枝手把手教学

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!
原创
博文更新于 2024.06.25 ·
1598 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

YOLOv10涨点改进|引入BoTNet结构与CA注意力机制,打造高效轻量级检测器

👉 独家改进,对现有YOLOv10进行二次创新,提升检测精度,适合科研创新度十足,强烈推荐🌟 统一使用 YOLOv10 代码框架,💥 本博客包含大量的改进方式,降低改进难度,改进点包含【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】【数据增强部分】【标签分配策略】【激活函数】等各个部分。🔥 专栏创新点教程均有不少同学反应和我说已经在自己的数据集上有效涨点啦!!
原创
博文更新于 2024.06.13 ·
643 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv10改进|采用ADown降采样模块有效融合

理论上,正确流程应该是:通过理论推导,获取合理的改进方案(即:设计、修改、调整模块等等),通过实验验证方案的有效性,进而将成果转化为科研论文。我们能做的就是基于现有知识,对YOLOv10进行尝试性改进,一旦发现了某个突破口,则对该点进行展开分析,对改进方案进行深入研究探索。还是那句话,不是ADown模块的原理不重要,而是在做创新这件事情上,我们要功利一些。像我在前面提到的那样,现阶段以学习为主,尝试将自己的想法加以实践,进而实验验证。**第一步:**在block.py文件中新增ADown类。
原创
博文更新于 2024.06.13 ·
1521 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

YOLOv10改进|采用ADown降采样模块有效融合

在backbone中,ADown可以用于在特征图的不同层之间进行下采样,而在head部分,它可以帮助进一步细化特征图的分辨率,以便于更精确的目标检测。例如,在YOLOv8的改进中,将ADown添加到backbone和head处,可以提供多个配置选项以适应不同的改进方法,这有助于实现更高的性能32。理论上,正确流程应该是:通过理论推导,获取合理的改进方案(即:设计、修改、调整模块等等),通过实验验证方案的有效性,进而将成果转化为科研论文。是YOLOv9中的下采样模块,对不同的数据场景具有一定的可学习能力。
原创
博文更新于 2024.06.12 ·
782 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

对神经网络,硕士不需要弄清原理,只需应用 了解这些就入门了,再多看论文多思考,发篇论文,毕业足够了。

发布动态 2024.06.07

YOLOv10涨点改进:原创自研 | GhostNet融合 | 从廉价的操作中生成更多的特征图

比如下图是对Resnet-50某层输出的可视化,每张图代表一个通道,图中三组颜色相连的图非常相似。论文将一组中的一张图称为本征图(intrinsic),其他和本征图相似的图称为本征图的魅影(ghost)。那么,既然ghost和Intrinsic非常相似,我们是否可以通过一种相对简单的、计算量较少的运算代替运算量大的卷积操作生成ghost图?ghost模块就是基于这种想法,提出用简单的线性运算生成ghost,但总共的通道数(intrinsic+ghost)以及生成特征图的大小和原来保持一致。
原创
博文更新于 2024.06.07 ·
661 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

YOLOv10涨点改进:原创自研 | GhostNet融合 | 从廉价的操作中生成更多的特征图

Ghost Module是一种模型压缩的方法,即在保证网络精度的同时减少网络参数和计算量,从而提升计算速度(speed),降低延时(latency)。Ghost 模块可以代替现有卷积网络中的每一个卷积层。基于Ghost模块,论文作者堆叠Ghost模块构建了GhostNet。模型提出的缘由:卷积输出的一组特征图在通道方向上,有部分通道内容相似。比如下图是对Resnet-50某层输出的可视化,每张图代表一个通道,图中三组颜色相连的图非常相似。
原创
博文更新于 2024.06.07 ·
384 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

小团体~第八波

开始报名啦!
原创
博文更新于 2024.04.16 ·
1098 阅读 ·
20 点赞 ·
0 评论 ·
11 收藏

Pytorch入门实战|第P6天:好莱坞明星识别

本文为内部限免文章,参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可。
原创
博文更新于 2024.03.01 ·
2432 阅读 ·
9 点赞 ·
11 评论 ·
25 收藏

小团体~抱团学习了!

教案与我的《深度学习100例》一样,都包含可以直接运行的源码与数据。一个深度学习领域博主,CSDN的博客专家、有八万+粉丝,和鲸特邀导师,《深度学习100例》的作者,一个收到中科院等诸多名校、名企offer的自由摄影爱好者。:希望为大家提供一个好的学习环境,大家共同努力形成一个互帮互助的良性循环,群里大家可以相互讨论交流学习过程中的点滴,希望训练营存在对大家是积极的。"365天深度学习训练营"向大家进行了承诺,与此相伴的,对大家的要求也将更高,这将明显体现在各位每周上交的作业上面。
原创
博文更新于 2024.01.17 ·
1725 阅读 ·
26 点赞 ·
1 评论 ·
27 收藏

Pytorch入门实战 | 第P4天:猴痘病识别

本文为内部限免文章参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可本周的代码相对于上周增加指定图片预测与保存并加载模型这个两个模块,在学习这个两知识点后,时间有余的同学请自由探索更佳的模型结构以提升模型是识别准确率,模型的搭建是深度学习程度的重点。DL+45。
原创
博文更新于 2024.01.16 ·
3014 阅读 ·
12 点赞 ·
7 评论 ·
18 收藏

Pytorch入门实战 | 第P3周:天气识别

☕难度:新手入门⭐。
原创
博文更新于 2024.01.10 ·
1867 阅读 ·
7 点赞 ·
8 评论 ·
19 收藏

这是要被奖金给砸晕啊......

钱真多
原创
博文更新于 2023.10.09 ·
1355 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天

文章目录一、前言二、RNN是什么三、准备工作1.设置GPU2.加载数据四、数据预处理1.归一化2.设置测试集训练集五、构建模型六、激活模型七、训练模型八、结果可视化1.绘制loss图2.预测3.评估一、前言今天是第9天,我们将开始RNN系列,完成股票开盘价格的预测,最后的R2可达到0.72,CNN系列后续我也会穿插更新我的环境:语言环境:Python3.6.5编译器:jupyter notebook深度学习环境:TensorFlow2.4.1往期精彩内容:深度学习100例-卷积神经网络
原创
博文更新于 2023.09.19 ·
25967 阅读 ·
152 点赞 ·
107 评论 ·
652 收藏

YOLOv5 如何关闭wandb

【代码】YOLOv5 如何关闭wandb。
原创
博文更新于 2023.09.11 ·
1236 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【GAN小白入门】Semi-Supervised GAN 理论与实战

创建一个标签嵌入层,用于将条件标签映射到潜在空间# 初始化图像尺寸,用于上采样之前# 第一个全连接层,将随机噪声映射到合适的维度# 生成器的卷积块nn.Tanh(),return img"""返回每个鉴别器块的层"""if bn:# 鉴别器的卷积块# 下采样图像的高度和宽度# 输出层self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 用于鉴别真假的输出层。
原创
博文更新于 2023.09.05 ·
1412 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多