《打造自己的DeepSeek》第1期:为什么要打造自己的DeepSeek?

近些年 AI 大火,不过在国内真正火起来还是源于今年春节期间的 DeepSeek

个人认为有两方面原因:

  • 一方面是 DeepSeek 使用方便。

由于众所周知的原因,国内对国外网站的访问是有诸多限制的,其中就包括各大 AI 模型的官网。

而 DeepSeek 是国内研发的,可以直接访问,网页使用是非常方便的。

而且 DeepSeek 是有 APP 的,只要有手机就可以在应用商店下载使用,极大降低了使用门槛。

  • 另一方面是 DeepSeek 免费。

现在国内外的 AI 大模型非常多,为什么唯独 DeepSeek 在国内大火呢?

免费是一个非常大的因素,就跟当年 360 干掉一众杀毒软件一样,免费是快速占领国内市场的捷径

但 DeepSeek 的免费与 360 不同,360 的免费是提供更差的功能和服务以及悄悄窃取用户数据为代价的。

而 DeepSeek 的免费不仅是免费使用,而且是开源的(开放源代码),就是说任何人都可以自行部署使用,不由开发公司独占(此处疯狂内涵“CloseAI”)。

而且 DeepSeek 还公开了非常详细的技术文档,供广大开发者学习和研究,可以毫不谦虚的说:DeepSeek 是 AI 大模型的一座里程碑

当然了,DeepSeek 在国外也很火爆,不过是因为另外一些原因,最重要的就是大大降低了训练成本,这个如果大家有兴趣后面再开一期细说…

回到我们今天的主题:为什么要打造自己的DeepSeek?

可能大家首先就有疑问:公版的 DeepSeek 用得好好的,为什么要打造自己的呢?

原因是多方面的:

  • 网络问题。

由于 DeepSeek 大火,访问量非常大,还有一些不怀好意的机构恶意攻击,造成 DeepSeek 使用的过程中偶尔会出现“服务器繁忙”的情况,给使用造成了一些不便。

自己部署的 DeepSeek 就不存在这个问题了,因为部署在自己的电脑上,不存在网络访问,电脑没网的时候都可以使用。

  • 安全和隐私问题。

DeepSeek 是放在公网上的,意味着所有向 DeepSeek 的提问都有被记录的可能,如果涉及一些安全密级较高的数据或者特别隐私的信息,直接在网络上提问是有风险的。

自己部署的 DeepSeek 就没有这个问题了,由于不存在网络访问,只要电脑做好防护,外界是很难获取到数据的。

  • 打造个人知识库。

这个需求比较小众,大体就是一些知识记录者不想将这些知识放在网上,但又希望能快速检索自己知识库的内容,甚至能根据自己整理的知识进行分析,使用 AI 大模型是比较方便的方法,但公网的 DeepSeek 显然是不适合的。

自己部署的 DeepSeek 可以读取自己本地的知识库,方便进行检索和分析,又没有公开到网上的风险,是比较适合的。

  • 自我学习。

当下 AI 绝对是一个大风口,但其较高的从业门槛(学历一般要求硕士起步,专业大多要求数学相关专业)阻挡了大多数人。

但先进行学习和研究还是很好的,随着 AI 的进一步发展,岗位肯定会大大增加,就业门槛就可能降低,此时具备一定的专业知识将会在未来的竞争中更容易脱颖而出。

前面介绍了,DeepSeek 是开源的,而且提供了非常完善的技术文档,如果想学习这方面的知识,自己部署一个 AI 大模型是最直观和方便的了。

  • 定制问题。

公版的 DeepSeek 是满血版的,非常强大,但它的功能都是设定好的,能回答的问题也是规定好的,有些敏感问题它是回答不了的。

自己部署的 DeepSeek 可以通过修改它的配置和源代码,提供更加定制化的功能,也可以解除对敏感问题的限制,使得自己的 DeepSeek 更加全能。

当然了,这个需要比较高的技术基础,而且需要定制的人群也在少数,这里就不做深入介绍了。如果有此需要可以关注公众号“六边形空间”进行详细交流。


以上就是为什么要打造自己的 DeepSeek 的一些原因了。

至于具体怎么打造,请关注下一期…

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少与知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参与交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天航星

感谢你的鼓励和认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值