朱雀333
码龄9年
求更新 关注
提问 私信
  • 博客:181,104
    181,104
    总访问量
  • 68
    原创
  • 209
    粉丝
  • 19
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
加入CSDN时间: 2016-08-09
博客简介:

qq_35827483的博客

查看详细资料
个人成就
  • 获得262次点赞
  • 内容获得14次评论
  • 获得360次收藏
  • 代码片获得699次分享
  • 博客总排名93,651名
  • 原力等级
    原力等级
    3
    原力分
    390
    本月获得
    0
创作历程
  • 1篇
    2025年
  • 11篇
    2024年
  • 27篇
    2023年
  • 4篇
    2022年
  • 16篇
    2021年
  • 13篇
    2020年
成就勋章
TA的专栏
  • Python
    22篇
  • AI
    13篇
  • 人工智能
    14篇
  • 网站
    11篇
  • 服务器
    11篇
  • 网易云音乐
    2篇
  • 爬虫
    5篇
  • HTML
    4篇
  • 浏览器隐私
    3篇
  • 安全技术
    5篇
  • openssl
    3篇
  • SSL
    1篇
  • 内网穿透
    3篇
  • flask
    3篇
  • ftp
    1篇
  • GUI
    1篇
  • 翻译
    2篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

哈希算法及其在文件唯一性判定中的应用

采用现代且安全的哈希算法(如SHA-256)对文件进行哈希计算,是实现准确且高效文件唯一性判定的关键技术。采用安全、现代的哈希算法(如SHA-256)进行文件哈希计算,是实现文件唯一性判定的高效、准确方法。近年来,随着安全要求的提升,传统的MD5和SHA-1已被认为存在安全缺陷,逐渐被更安全、更可靠的算法所替代。推荐使用安全可靠且经过充分审计的算法,如SHA-2系列(SHA-256/512)和BLAKE2,而非已被破译的MD5和SHA-1。通过对文件内容计算哈希值,可获得代表文件内容的数字指纹。
原创
博文更新于 2025.05.27 ·
752 阅读 ·
22 点赞 ·
0 评论 ·
6 收藏

【无标题】MySQL基础命令

希望这些命令能帮助你更好地管理和操作MySQL数据库。- **解释**:显示名为`table_name`的表的结构,包括列名、数据类型和其他信息。- **解释**:更新名为`table_name`的表中符合条件的行的数据。- **解释**:从名为`table_name`的表中选择符合条件的数据。- **解释**:修改名为`table_name`的表中的列的数据类型。- **解释**:删除名为`table_name`的表中符合条件的行。- **解释**:删除名为`table_name`的表中的一个列。
原创
博文更新于 2024.05.28 ·
526 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

TensorFlow常见任务训练

tf.keras.layers.LSTM(50, return_sequences=True, input_shape=[None, 1]), # LSTM层。Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), # 卷积层。Dense(128, activation='relu'), # 全连接层,128个神经元,激活函数为ReLU。Conv2D(64, (3, 3), activation='relu'), # 卷积层。
原创
博文更新于 2024.05.28 ·
542 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

有关钱包相关开发的库和依赖

开发加密货币
原创
博文更新于 2024.04.25 ·
930 阅读 ·
21 点赞 ·
2 评论 ·
18 收藏

分层钱包HD钱包

bc1 开头的通常指的是比特币(Bitcoin)的地址,这种格式遵循了比特币改进提案BIP 0173中定义的Bech32编码格式。“分层钱包技术”可能是指比特币的分层确定性钱包(Hierarchical Deterministic Wallets,简称HD Wallets),是一种基于BIP32(Bitcoin Improvement Proposal 32)和BIP44标准的钱包技术。这意味着,只要你有这个种子,你就可以恢复整个钱包的所有地址和私钥,即使是在不同的设备上。
原创
博文更新于 2024.02.16 ·
1144 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

音频处理库和工具,以及相关开源

这取决于你的应用和所需的特征表示形式。说明: Essentia是一个音乐分析和音频特征提取库,支持多种音频特征提取,包括音高、节拍、旋律、和声和节奏等。说明: Essentia是一个音乐分析和音频特征提取库,支持多种音频特征提取,包括音高、节拍、旋律、和声和节奏等。说明: YAAFE是一个用于音频特征提取的工具箱,它可以从音频文件中提取多种音频特征,并且易于与其他音频处理软件集成。说明: YAAFE是一个用于音频特征提取的工具箱,它可以从音频文件中提取多种音频特征,并且易于与其他音频处理软件集成。
原创
博文更新于 2024.02.04 ·
1420 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

BERT问答模型回答问题

我们从TensorFlow Hub加载了一个预训练的BERT模型,并在其基础上添加了一个简单的问答头部,该头部由两个线性层组成,用于预测答案的起始和结束位置。您可以在BERT模型之上添加一个问答头部,通常是两个线性层,一个用于预测答案的起始位置,另一个用于预测答案的结束位置。这个例子假设您已经有了一个适当格式的训练数据集,其中包含了编码后的输入ids、注意力掩码、以及答案的起始和结束位置。问答(QA)模型通常使用的数据集包含了一系列的问题、上下文(问题的答案所在的文本段落)以及答案在上下文中的确切位置。
原创
博文更新于 2024.01.30 ·
1388 阅读 ·
23 点赞 ·
0 评论 ·
9 收藏

LEMP环境如何搭建(nginx+mysql+php)

LEMP环境搭建(mysql+nginx+php+ubuntu/debian)
原创
博文更新于 2024.01.26 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CNN/DailyMail训练文本摘要模型

要使用 TensorFlow Datasets (TFDS) 来训练一个文本摘要模型,可以选择一个包含文章和摘要的数据集,例如 CNN/DailyMail 数据集。这个回调会在每个训练周期(epoch)结束时运行,并根据我们指定的条件(如验证集上的损失或准确率)保存模型。方法将数据集划分为大小为 32 的批次,这意味着模型将一次处理 32 篇文章及其相应的摘要。函数被应用到训练和验证数据集上,这样我们就得到了可以直接用于模型训练和评估的数据集。决定了词汇表的大小,即模型可以识别的不同单词的最大数量。
原创
博文更新于 2024.01.16 ·
1530 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

计算机类杂志

网址: http://jeit.ie.ac.cn/cn/volumn/home.shtml。网址: http://www.cipsc.org.cn/jsip/index.php。网址: http://www.ejournal.org.cn/cn/dqml.asp。网址: http://www.c-s-a.org.cn/ch/index.aspx。网址: http://www.cjig.cn/jig/ch/index.aspx。网址: http://www.jos.org.cn/ch/index.aspx。
原创
博文更新于 2024.01.07 ·
484 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

python3 Flask旅游网站的开题报告

发布资源 2024.01.03 ·
docx

BERT模型

请注意,代码中的 `'bert-base-uncased'` 是模型和分词器的名称,它指的是基础 BERT 模型,其训练使用不区分大小写的文本。BERT 可以用于文本分类、问答、文本生成等任务。例如,如果您正在进行情感分析任务,您可以添加一个分类层到BERT模型上,并在您的情感分析数据集上重新训练(微调)模型。GPT与BERT的区别主要在于单向与双向上下文的处理,以及预训练任务的设计,BERT的双向预训练允许模型更好地理解词汇的上下文含义,为各种复杂的NLP任务提供了强大的基础模型。
原创
博文更新于 2024.01.02 ·
638 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

训练生成手写体数字 对抗神经网络

下面是一个使用TensorFlow和Keras的生成对抗网络(GAN)的基本示例,用于生成手写体数字。这是一个非常基础的GAN实现,对于实际应用,你可能需要进行很多调整和优化,包括更复杂的模型架构、更细致的训练过程控制、超参数调整等。在这个代码中,首先定义了生成器和判别器的架构,然后将它们结合起来形成一个GAN网络。我没有包括所有可能的最佳实践,如模型保存、加载、超参数调整、日志记录等。函数用于保存生成的图像,以便我们可以查看GAN在训练过程中的进步。函数负责训练过程,它交替地训练判别器和生成器。
原创
博文更新于 2024.01.01 ·
733 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

TensorFlow Hub模型

然后,我们加载了ImageNet的标签文件,这是一个包含1000个类别的列表,与MobileNet V2模型的训练数据集相对应。这些URL可以在TensorFlow Hub的官方网站上找到,每个模型都有一个对应的页面,上面提供了模型的详细信息和使用说明。在使用这些模型时,请确保阅读每个模型的文档,了解它们的输入和输出格式,以及如何正确地使用它们。要使用TensorFlow Hub上的BERT模型来补齐文本中的空白部分,可以使用掩码语言模型(Masked Language Model, MLM)的功能。
原创
博文更新于 2024.01.01 ·
2072 阅读 ·
19 点赞 ·
0 评论 ·
29 收藏

大语言模型训练数据集

网址: [https://www.ted.com/participate/translate/get-started](https://www.ted.com/participate/translate/get-started)- 网址: [https://nlp.stanford.edu/projects/snli/](https://nlp.stanford.edu/projects/snli/)- 介绍: TED演讲的数据集不仅包括视频内容的字幕文本,还包含了许多语言的翻译版本。
原创
博文更新于 2023.12.31 ·
1685 阅读 ·
9 点赞 ·
1 评论 ·
7 收藏

Django的基本代码示范

一个可扩展的模板引擎;不过,Django确实是一个受到广泛认可和使用的Web框架,它有一个活跃的社区,定期举办会议和聚会,并且有大量的文档和教程可供学习和参考。Django确实是由Adrian Holovaty和Simon Willison创建的,是在2003年作为Lawrence Journal-World报纸的内部项目开始的,并于2005年7月以开源的形式发布的。10. Django for the Curious:一本关于Django的好奇心驱动的书籍,涵盖了从基础知识到高级技巧的所有主题。
原创
博文更新于 2023.12.30 ·
1472 阅读 ·
19 点赞 ·
0 评论 ·
24 收藏

JavaScript滑块,网站内部

下面是您提供的HTML滑块示例代码,我为其添加了详细的中文注释,以便您更好地理解每一部分的作用。函数,它会在滑块的值发生变化时被调用(通过。,这使它成为一个滑块。在这个示例中,我们定义了一个滑块容器。元素的文本内容,以显示滑块的当前值。元素被设置为透明,用户实际上看到的是。元素和一个用于显示当前值的。
原创
博文更新于 2023.12.30 ·
496 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

图像去噪opencv

在OpenCV中,图像去噪通常可以通过多种方式来实现,包括高斯模糊、中值滤波、双边滤波等。提供完整的参数和中文注释。
原创
博文更新于 2023.12.30 ·
1393 阅读 ·
9 点赞 ·
0 评论 ·
16 收藏

滤波器opencv

在OpenCV中,滤波器用于对图像进行平滑、锐化、边缘检测等操作。替换为您要处理的图像的实际路径。
原创
博文更新于 2023.12.30 ·
906 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

tensorflow的unet模型

Unet、Tensorflow
原创
博文更新于 2023.12.28 ·
1268 阅读 ·
1 点赞 ·
1 评论 ·
9 收藏
加载更多