AdamZhu_Spark
码龄10年
求更新 关注
提问 私信
  • 博客:16,579
    16,579
    总访问量
  • 19
    原创
  • 3
    粉丝
  • 8
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2016-02-21
博客简介:

qq_34034442的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得15次评论
  • 获得29次收藏
  • 博客总排名1,512,608名
创作历程
  • 1篇
    2019年
  • 18篇
    2018年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    pytorchnlpscikit-learn集成学习分类
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

HTML, CSS, and Javascript for Web Developers Week1

HTML, CSS, and Javascript for Web Developers Week1重要概念HTML:Hypertext Markup Language,其中Hypertext指的是带有链接转向其他页面的文本,markup指的是有标签
原创
博文更新于 2019.01.22 ·
239 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

cs231n lecture8 笔记

这一讲节介绍了GPU的一些特性以及tensorflow, pytorch等一些其他深度学习框架,框架基本使用部分不会在这篇笔记中,主要是为了记录深度学习一些重要而基础的概念。CPU vs GPUCPU上有更少的核,但每个核更加强大,比较适合顺序处理,时钟频率更快GPU的核数多得多,但单一核能力不如CPU,适合并行处理,如在矩阵计算中(拆成每个行列相乘)建议:在比较CPU与G...
原创
博文更新于 2018.12.01 ·
267 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Ch5 Getting started with pandas 笔记 《python for data analysis》

Chapter 5 Getting started with pandas之前没有系统看过这本书,现在准备在blog上写笔记,记录一些以前没注意的或是觉得重要的,略去一些已知的Data Frame 基本df.head()会显示前5行用于展示 给已有df添加列,若用list array加,其长度要与原先相同,若用Series则不必In [57]: frame2 Out[57]: y...
原创
博文更新于 2018.11.28 ·
236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Ch5 Getting started with pandas 笔记 《python for data analysis》

Chapter 5 Getting started with pandas之前没有系统看过这本书,现在准备在blog上写笔记,记录一些以前没注意的或是觉得重要的,略去一些已知的Data Frame 基本df.head()会显示前5行用于展示 给已有df添加列,若用list array加,其长度要与原先相同,若用Series则不必In [57]: frame2 Out[57]: y...
原创
博文更新于 2018.11.28 ·
236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Chapter4 Numpy basics python for data analysis 笔记

之前没有系统看过这本书,现在准备在blog上写笔记,记录一些以前没注意的或是觉得重要的,略去一些已知的Chapter4 Numpy basicsNumpy 特性 内部存储在连续的blocks内存中,算法library用C写成,比原生类型使用更少内存 可进行复杂计算而不用looptips:data.dtype 查看内部元素类型 ,dtype可以进行设置dtype转换:ar...
原创
博文更新于 2018.11.23 ·
214 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

poj1787 完全背包+路径记录总结

第一次接触完全背包,看了别人思路后再写的。关于本题的背包问题的几个总结:1. 注意分析全面转移条件,有时候这个问题会卡住2. 这题的背包是每个物品有限个,本题中用cnt[]在转移条件中限制3. 学会将问题转化,例如本题一开始想不到用背包,考虑用搜索如果真的搜索的话效率一定低下,但要求是硬币数最多的组合,就能用背包了4. 通过Pre[]记录路径的方法很有意思 代码:...
原创
博文更新于 2018.11.01 ·
659 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

KNN SVM Softmax 在 CIFAR-10上的图像识别

概述这篇博客以CIFAR-10数据集为基础,从对图像识别基础的预处理部分分析其背后理论,到讲述对KNN SVM Softmax的具体实现,并通过验证集进行参数调优,最后展开结果性分析,介绍基本的图像识别应用,材料部分来自于Stanford CS231n 的notes和assignments(project)。CIFAR-10介绍该数据集共有60000张彩色图像,每张图像是32*32*3...
原创
博文更新于 2018.11.01 ·
2784 阅读 ·
3 点赞 ·
6 评论 ·
17 收藏

poj 1040 DFS

与网上其他DFS解法相似,但通过for循环实现是否接单:大致思路相似:维持一个数组存储当前搜索状态的载客量,用takeOrder()函数实现两个功能:1.判断能否接单2.若能则改变状态,同时对于负的载客直接改变状态用于回溯,dfs()中用for循环遍历订单并且通过参数设置不会搜索已经搜过的订单,具体的实现方法见代码,运行时间大概800ms#include<iostream>...
原创
博文更新于 2018.10.14 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

POJ 1416报告

继续写DFS的题:状态记录方法用了一个method变量记录选取过程,看别人题解知道的,不然不知道咋办。我的方法总代码量相对其他的不大#include<iostream>#include<cstring>#include<cstdio>#include<algorithm>using namespace std;int sum;...
原创
博文更新于 2018.10.08 ·
163 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

POJ 1724 DFS解法

之前没做过图相关的题,所以一开始在构建数据结构的时候思考了很久,然后翻看严老师的《数据结构》看到了邻接表的表示方法,并且本身用dfs邻接表也就很适合,然后又瞄了一眼别人题解的数据结构表示,发现还可以用数组先存数据然后用结构体内设置参数对数组索引来代替指针。关于这题,如果不对去过的路进行剪枝,会出现RunTimeError一开始我以为是数组越界对着代码查了好久,然后考虑到可能是栈过载,在加入了v...
原创
博文更新于 2018.09.11 ·
253 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线性回归 《机器学习实战》笔记

一、概述基本的线性模型简单且易于建模,而一些功能更为强大的非线性模型可以在现行模型的基础上通过引入层级结构或者高维映射得到,机器学习实战中首先讲解了一种基本形式。二、原理对于:$$f(x) = w^{T}x + b$$问题,当w和b学习得到后,模型就得到了确定。于是:\hat{w^{*}}=argmin_{w}(y-X\hat{w})^T(y-X\hat{w})对w求导:$$\frac{\part...
原创
博文更新于 2018.07.14 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow 的Logistic回归

简单的TF实现,用于识别minst手写数字首先设置库与导入数据:import tensorflow as tfimport numpy as np#input_data文件为我自己的读取mnist数据库代码文件import input_data readData = input_data.read_data_sets("/home/hanchao/mnist" , one_hot=Tru...
原创
博文更新于 2018.07.13 ·
247 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PCA(Principle Compents Analysis)主成分分析 机器学习实战报告

一、概述在处理高维数据时,常常数据间有相关性造成一定冗余,这样不仅降低了计算效率浪费了计算资源也可能是问题更复杂得到更加不精确的结果,所以我们要对数据进行降维,降维的目的:1.减少预测变量的个数2.确保这些变量是相互独立的3.提供一个框架来解释结果降维的方法有:主成分分析、因子分析、用户自定义复合等。这里讨论主成分分析,其好处还在于能除去部分噪声。二、用Numpy执行PCA其步骤:1. 均值归一化...
原创
博文更新于 2018.07.13 ·
518 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Logistic 回归报告

一、概述本次报告利用了 horseColic 数据进行实验性分析,分析探讨了两种 Logistics回归模式的适用范围与优缺点。二、数据预处理本次实验数据采用 UCI 数据集中的 horseColic 数据,包含了 21 个特征与两个分类类别,并自身划分了训练集与测试集,在 21 个特征中,部分缺失的情况采用取 0 处理,这种做法的依据在是 Logistic 回归中这种做法不会影响 weights...
原创
博文更新于 2018.07.12 ·
2378 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

朴素贝叶斯课程报告

KNN、朴素贝叶斯、决策树课程报告概述本次实验主要测试了KNN、朴素贝叶斯、决策树在不同变量约束下对同一文本集进行情感分析预测。首先通过Python自然语言处理库ntlk对文本特征进行调优,之后分析该数据特性排除了决策树的使用并对KNN与朴素贝叶斯算法根据此数据集进行参数调优,最后通过最优参数对此两种算法进行了实验性对比,得出了当前文本分析问题上朴素贝叶斯算法的准确度相较于KNN更好的结论,并且在...
原创
博文更新于 2018.07.12 ·
3256 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

决策树学习报告

一、 问题描述对于具有多个属性的分类问题,我们需要找到一个合适的分类方法,这里,我们尝试采用符合人类决策过程的决策树学习算法,用树形判断的方式对数据逐层分类。二、 数据准备本次报告测试数据采取《机器学习实战》中测试数据集,无缺省异常值。四维数据基本格式展示如下:...
原创
博文更新于 2018.07.12 ·
1391 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

KNN 的简单应用

一、 概述    本报告在单一数据集上测试了 KNN 的 k 值,欧拉距离的使用与否,归一化数据与否对 KNN 算法结果的影响,测试数据来源于 UCI 机器学习数据集的 iris 数据集,由于数据量较少,采用交叉验证的方式(10-fold-cross validation),实验结果表明,在本数据集上使用欧拉距离,不进行特征归一化,在 k = sqrt(m)(m 为数据测试量)能取得最小的错误率,...
原创
博文更新于 2018.07.11 ·
1175 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Adaboost 笔记

Bootstrap,Bagging,Boosting都属于集成学习方法,所谓集成学习方法,就是将训练的学习器集成在一起,原理来源于PAC (Probably Approximately Correct,可能近似正确学习模型)。在PAC学习模型中,若存在一个多项式级的学习算法来识别一组概念,并且识别正确率很高,那么这组概念是强可学习的;而如果学习算法识别一组概念的正确率仅比随机猜测略好,那么这组概念...
原创
博文更新于 2018.07.11 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

K means 图片压缩

k-means的基本原理较为清晰,这里不赘述,本次博客主要通过基础的k means算法进行图像的压缩处理。原理分析在彩色图像中,每个像素的大小为3字节(RGB),可以表示的颜色总数为256 * 256 * 256。从网上下了一张经典的图像压缩图片作为处理图片原图如下:...
原创
博文更新于 2018.06.05 ·
1512 阅读 ·
0 点赞 ·
3 评论 ·
3 收藏

支持向量机笔记(Support vetctor Machines notes)

<a href="http://www.codecogs.com/eqnedit.php?latex=\hat\gamma=\min_{i=1,...,m}\hat\gamma^{i}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\hat\gamma=\min_{i=1,...,m}\hat\gam...
原创
博文更新于 2018.05.26 ·
441 阅读 ·
0 点赞 ·
6 评论 ·
0 收藏
加载更多