极度畅想
码龄10年
求更新 关注
提问 私信
  • 博客:91,609
    91,609
    总访问量
  • 82
    原创
  • 308
    粉丝
  • 5
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
加入CSDN时间: 2015-11-03

个人简介:大家好!我是一名专注于脑机接口(BCI)开发的技术研究者。 目前,我的工作主要围绕脑机接口系统的设计、开发与优化展开,涉及神经信号采集与预处理、特征提取算法研究、以及 BCI 应用系统的搭建与调试等方向。 在这里,我会分享脑机接口开发过程中的技术心得、遇到的问题及解决方案,也会聊聊行业前沿动态和个人研究感悟。期待与各位同行交流探讨,共同进步!

博客简介:

qq_32516809的博客

查看详细资料
个人成就
  • 获得1,616次点赞
  • 内容获得10次评论
  • 获得1,378次收藏
  • 代码片获得411次分享
  • 博客总排名23,109名
  • 原力等级
    原力等级
    4
    原力分
    564
    本月获得
    58
创作历程
  • 82篇
    2025年
成就勋章
TA的专栏
  • 脑电情绪识别模型实战系列
    18篇
  • 脑电数据分析
    26篇
  • IT杂谈
    3篇
  • 脑机接口
    6篇
  • 脑电预处理
    19篇
  • EEG数据集
    5篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 3

兴趣领域 设置
  • 大数据
    hadoophivestormsparketl
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

脑电模型实战系列(四):基于GAN和CGAN的脑电情绪识别 DEAP EEG 特征预处理与可视化-归一化 + PCA + KernelPCA 探索数据分布(一)

本文介绍了基于DEAP数据集的EEG情绪识别数据预处理方法。作者使用生成对抗网络(GAN)和条件GAN(CGAN)进行数据增强,重点处理371维EEG特征的高维度和量纲问题。通过MinMaxScaler将特征归一化至[-1,1]区间以匹配GAN生成器的输出范围,并采用PCA和KernelPCA进行降维可视化。结果显示,线性PCA下情绪分类重叠严重,而采用RBF核的KernelPCA能更好分离高/低唤醒度样本,证明EEG信号存在非线性模式。预处理后的数据为后续GAN生成逼真样本奠定了基础。
原创
博文更新于 19 小时前 ·
668 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

脑电模型实战系列(三):基于KNN的DEAP脑电情绪识别进阶优化与深度学习对比(五)

本文是情绪识别系列收官之作,针对现有KNN方法的局限提出系统优化方案。首先指出KNN在跨被试泛化(50%准确率)和特征深度上的不足,随后从三个维度展开优化:1)通过PCA降维和留一法验证提升跨被试验证效果;2)引入功率谱密度、差分熵、小波变换等高级特征,将准确率提升8-15%;3)利用GridSearchCV和Optuna优化K值、距离度量和投票阈值。文章还对比了SVM、随机森林和CNN/LSTM等算法的性能,其中CNN-LSTM模型可达94%准确率。最后探讨了实时实现的滑动窗口技术和商业应用前景,并提供了
原创
博文更新于 20 小时前 ·
466 阅读 ·
16 点赞 ·
0 评论 ·
16 收藏

脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 代码实战、结果分析与可视化(四)

本文介绍了基于Python的脑电信号情绪识别系统实现过程。通过搭建实验环境、处理DEAP数据集、提取特征和KNN分类,最终实现实时情绪表情弹窗功能。系统包含训练阶段(特征提取与标签生成)和预测阶段(分类与OpenCV可视化),并分析了被试内和跨被试的识别准确率差异。文章还提供了进阶脑电图谱可视化方法和常见问题解决方案,为开发完整脑机接口系统奠定基础。
原创
博文更新于 前天 11:31 ·
464 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)

本文介绍了基于KNN算法的EEG情绪识别方法,重点探讨了Canberra距离在脑电信号处理中的优势。KNN算法因其对非线性特征的适应性和小样本友好性,成为EEG情绪识别的理想选择。文章详细分析了Canberra距离相比欧氏距离的优越性,特别是在处理EEG频域特征时对微小差异的敏感性。作者还提出了智能投票机制(RatioThreshold)来优化预测结果,将单被试准确率提升至70%左右。最后展示了如何将预测结果映射到Russell情绪环中的具体情绪类别。该研究为脑机接口和情绪识别提供了实用的技术方案。
原创
博文更新于 前天 11:26 ·
1027 阅读 ·
14 点赞 ·
0 评论 ·
10 收藏

脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 FFT 变换与五大频带特征提取实战(二)

本文介绍了如何利用快速傅里叶变换(FFT)从脑电信号中提取情绪特征。首先通过Butterworth带通滤波器(0.5-45Hz)预处理EEG数据,然后对32个通道进行FFT变换,划分Delta(1-4Hz)、Theta(4-8Hz)、Alpha(8-13Hz)、Beta(13-30Hz)和Gamma(>30Hz)五个生理意义频带。通过计算各频带的标准差,构建160维特征向量,最终生成可用于情绪分类的训练数据集。文章还提供了Python实现代码,并建议通过拓扑图直观验证特征提取效果,为后续KNN分类器训
原创
博文更新于 2025.12.17 ·
778 阅读 ·
5 点赞 ·
0 评论 ·
24 收藏

脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)

摘要: 本文介绍了基于脑电信号(EEG)的情感计算技术,聚焦DEAP数据集的情绪分类任务。首先解析了EEG的五个核心频带(Delta至Gamma)及其与情绪的关联,并详细拆解了DEAP数据集的结构(32通道EEG+外围信号,40段视频刺激)。通过Russell情绪坐标系将情绪量化为效价(Valence)和唤醒度(Arousal),并演示了数据加载与可视化方法(Python代码示例)。文章还展望了后续的频域特征提取(FFT)和KNN分类器优化方向,为构建“读心”模型奠定理论基础。
原创
博文更新于 2025.12.17 ·
890 阅读 ·
33 点赞 ·
0 评论 ·
20 收藏

脑电模型实战系列(二):PyTorch实现CNN-RNN融合模型时序动态捕捉(系列压轴)

本文介绍了CPCRNN混合模型在EEG情绪识别中的应用。该模型融合CNN的时空特征提取能力和LSTM的时序建模优势,通过三层卷积和34层LSTM堆叠,有效捕捉情绪动态变化。实验结果显示,在DEAP数据集上准确率达90-93%,较纯CNN提升10%。文章详细解析了模型架构和代码实现,并展望了结合注意力机制的未来优化方向(可达95%+准确率)。该系列从DNN基准到CNN再到CPCRNN,完整展示了EEG情绪识别的技术演进路径。
原创
博文更新于 2025.10.11 ·
828 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

脑电模型实战系列(二):PyTorch实现CNN_DEAP的多尺度时空特征提取

本文介绍了基于卷积神经网络(CNN)的脑电信号(EEG)情感识别方法。针对传统深度神经网络(DNN)无法捕捉EEG时空特征的局限,提出CNN_DEAP模型,通过重塑1D信号为2D矩阵并采用多尺度卷积路径(40×1和20×1核)自动提取时空模式。模型使用LeakyReLU激活函数和双目标损失函数(交叉熵+L2正则化),在DEAP数据集上实现了约80%的准确率,较DNN提升20%。文章详细解析了PyTorch实现代码,包括输入重塑、多路径卷积融合和双损失函数设计,并展望了未来多模态融合与时序建模的发展方向。
原创
博文更新于 2025.10.11 ·
845 阅读 ·
16 点赞 ·
0 评论 ·
16 收藏

脑电模型实战系列(二):PyTorch实现简单DNN模型

本文介绍了基于深度神经网络(DNN)的脑电情绪识别方法。文章首先阐述了DNN作为基准模型的优势:简单易用、训练快速,适合验证EEG数据的质量和分类可行性。随后详细讲解了DNN的网络结构设计,包括输入层、隐藏层和输出层的配置,并提供了完整的PyTorch实现代码。实验结果显示,该模型在DEAP数据集上能达到约60%的测试准确率,虽不高但优于随机猜测和传统方法。最后讨论了DNN的局限性及改进方向,如加入BatchNorm来提升性能,为后续更复杂的CNN模型奠定基础。本文为初学者提供了EEG情绪识别的实用入门指南
原创
博文更新于 2025.10.10 ·
1138 阅读 ·
25 点赞 ·
0 评论 ·
16 收藏

脑电模型实战系列(二):为什么从简单DNN开始脑电情绪识别?

摘要: 2025年,AI与脑机接口(BCI)技术深度融合,通过EEG设备实时监测情绪(效价与唤醒度),应用于压力调节和游戏优化。本系列教程基于DEAP和SEED数据集,从DNN、CNN到CNN-RNN混合模型逐步构建脑电情绪识别系统,兼顾理论与实践。EEG数据存在跨被试变异性等挑战,需渐进式学习时空特征提取和时序动态捕捉。代码框架支持统一数据加载与扁平化预处理,实验结果显示模型准确率从DNN的65%提升至混合模型的96%。2025年趋势聚焦跨被试泛化、多模态融合及可解释AI,为BCI应用提供新思路。
原创
博文更新于 2025.10.10 ·
1021 阅读 ·
14 点赞 ·
0 评论 ·
13 收藏

脑电模型实战系列:巅峰挑战-CNN+LSTM混合模型实现90%准确率脑电情绪识别

本文介绍了脑电情绪识别的CNN+LSTM混合模型实战经验。该模型通过结合1DCNN的空间特征提取和LSTM的时序建模能力,在DEAP数据集上实现了90-95%的识别准确率,相比单一LSTM模型提升3-5%。文章详细解析了模型架构设计,包括多层Conv1D(64filters)、BatchNorm归一化、512-128单元的LSTM堆叠等关键技术,并分享了dropout=0.5等关键调参经验。通过完整的代码实现和可视化分析,展示了模型从数据预处理到训练验证的全流程,最终验证准确率达到92%以上。该混合模型充分
原创
博文更新于 2025.09.26 ·
1135 阅读 ·
26 点赞 ·
0 评论 ·
18 收藏

脑电模型实战系列:优化LSTM-dropout、正则化和多层RNN实践

《脑电情绪识别实战:优化LSTM模型解析》摘要:本文详细介绍了model_6.py中优化LSTM模型的实现,通过多层RNN结构(两个512单元LSTM层)结合dropout(0.2)和L2正则化,相较单层LSTM(model_4.py)将验证准确率从82%提升至88-92%。文章深入解析了return_sequences机制和正则化原理,通过实验对比证明深度RNN能更好捕捉脑电时序特征。完整实现流程包含数据预处理、模型构建和训练评估,在DEAP数据集上获得loss0.15的优化效果。文末还提供了可视化训练曲
原创
博文更新于 2025.09.26 ·
627 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

脑电模型实战系列:深化网络-多层全连接在情绪识别中的威力

《脑电情绪识别深度学习实战:深化全连接网络提升准确率》 本文介绍了脑电情绪识别模型model_5.py的实现,该深度全连接网络通过6层结构(70→512→1024→1024→512→2)显著提升性能。相比前代5层模型,新模型输入维度从4040降至70,聚焦关键特征,结合Dropout防止过拟合,验证准确率提升3-5%达到90-93%。文章详细解析了从数据预处理(归一化、切片、二分类标签)到模型构建、训练及可视化的全流程,包括loss曲线对比和性能分析。实验表明网络深度能更好捕捉情绪模式,RTX3060训练约
原创
博文更新于 2025.09.25 ·
1190 阅读 ·
33 点赞 ·
0 评论 ·
27 收藏

脑电模型实战系列:进入序列世界-用LSTM处理脑电时序数据

本博客介绍了《脑电情绪识别模型实战系列》的第四篇,重点从全连接网络转向LSTM序列模型。文中详细解释了LSTM相对于全连接网络在处理脑电时序数据时的优势,包括其捕捉时间依赖性的能力。通过具体代码示例,展示了数据预处理、模型构建到训练评估的全流程实现,并分析了输入形状(40,101)的时序意义。结果表明,该LSTM模型在验证集上获得80-85%的准确率,优于同等条件下的全连接网络。文章最后提出了进一步的优化方向,为读者继续深入序列模型学习提供了实用指导。
原创
博文更新于 2025.09.25 ·
873 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

脑电模型系列导论:为什么从最简单的模型开始学习脑电情绪识别?

摘要: 《脑电情绪识别模型实战系列》基于DEAP数据集,通过7个由易到难的深度学习模型(从简单DNN到混合CNN-LSTM),逐步解析脑电信号(EEG)情绪分类任务。系列涵盖数据处理、模型构建与优化,帮助初学者掌握EEG特征提取、时序建模等关键技术,最终实现90%准确率。适用于心理健康监测、智能穿戴等场景,每篇提供代码详解与实验挑战,助力AI与神经科学交叉领域实践。
原创
博文更新于 2025.09.25 ·
761 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

脑电模型实战系列:添加防过拟合-Dropout在脑电全连接模型中的应用

本文介绍了基于Dropout机制的全连接神经网络(model_3.py)在脑电情绪识别中的应用。相比前篇model_2.py,该模型通过引入Dropout(0.2)和层级递减设计(512→256→128→64units),有效减少了过拟合问题。作者详细解析了Dropout防过拟合的原理,并展示了从数据预处理到模型训练的全流程实现。实验结果表明,该模型在DEAP数据集上获得88-92%的验证准确率,训练/验证集差距缩小至5-8%,优于前代模型。文章包含代码逐行解析、模拟数据示例和可视化结果分析,为读者提供了完
原创
博文更新于 2025.09.24 ·
1280 阅读 ·
34 点赞 ·
0 评论 ·
21 收藏

脑电模型实战系:脑电模型进阶-构建一个高效的全连接网络

本文介绍了《脑电情绪识别模型》系列的第二篇实战教程,重点讲解了一个更高效的全连接神经网络模型(model_2.py)。相比上篇的简单DNN,新模型将隐藏层宽度从5-6个单元扩展到512个,显著提升了特征捕捉能力,同时采用He初始化提升训练稳定性。文章详细解析了数据预处理流程(reshape、one-hot编码等)、模型构建方法(512单元Dense层、ReLU激活、Adam优化器),并提供了训练技巧(early stopping防止过拟合)。通过对比实验显示,新模型准确率可达85-90%,较上篇提升5-10
原创
博文更新于 2025.09.24 ·
1126 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

脑电模型实战系列:入门脑电情绪识别-用最简单的DNN模型起步

本文介绍了《脑电情绪识别模型实战系列》的第一篇内容,重点讲解了一个基于全连接网络(DNN)的简单脑电情绪识别模型。文章详细说明了为什么选择这个简单模型作为入门:它结构简单(仅3层全连接层),参数少,计算高效,适合初学者快速上手。文中深入解析了数据预处理流程(包括数据加载、扁平化处理和one-hot编码)以及模型构建过程(使用Glorot初始化、ReLU激活函数和Softmax输出层)。作者还分享了实际运行结果,在DEAP数据集上该模型训练准确率达到85%,验证准确率80%左右,并展示了训练曲线。最后,文章指
原创
博文更新于 2025.09.23 ·
1321 阅读 ·
19 点赞 ·
2 评论 ·
17 收藏

【脑电分析系列】全景综述与未来展望:从信号到智能,洞见大脑奥秘

《脑电分析全景指南:从基础到智能的25章终极总结》 本文系统梳理了脑电分析(EEG)的知识体系与发展趋势。内容涵盖四大维度:1)基础处理(信号采集、ICA去噪、滤波等预处理技术);2)特征与模型(时频域特征提取、机器学习/深度学习方法);3)应用场景(癫痫检测、运动想象BCI、情绪识别);4)现存挑战与未来方向(噪声干扰、数据稀缺、多模态融合及预训练模型)。文章特别指出,EEG分析正从传统信号处理向深度学习主导的智能框架演进,并提供了分阶段学习路径建议(MNE-Python入门→特征工程→深度学习实战),助
原创
博文更新于 2025.09.22 ·
1034 阅读 ·
18 点赞 ·
0 评论 ·
26 收藏

【脑电分析系列】第25篇:情绪识别与认知研究中的EEG应用:一个完整的实验设计与数据分析流程

摘要:本文系统介绍了EEG在情绪识别与认知研究中的应用。主要内容包括: 实验范式:通过标准化刺激(如IAPS图片、视频)诱发情绪,结合情绪Stroop等认知任务; 多模态融合:整合EEG与眼动、心率、皮肤电等生理信号,提升情绪识别准确率(可达95%); EEG与行为学关联:分析ERP(如P300)、功率谱(如Alpha不对称性)与反应时、准确率的统计关系; 完整流程:从实验设计、伦理审批到Python代码实现(MNE/scikit-learn),涵盖预处理、特征提取、分类及统计检验; 前沿进展:2025年趋
原创
博文更新于 2025.09.22 ·
1140 阅读 ·
23 点赞 ·
0 评论 ·
21 收藏
加载更多