我对算法一无所知
码龄10年
求更新 关注
提问 私信
  • 博客:370,026
    社区:1
    动态:134
    370,161
    总访问量
  • 84
    原创
  • 4,750
    粉丝
  • 45
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:澳大利亚
加入CSDN时间: 2015-09-13

个人简介:人生处处是捷径,不绕远儿就是捷径。

博客简介:

qq_31267769的博客

查看详细资料
个人成就
  • 获得494次点赞
  • 内容获得108次评论
  • 获得1,668次收藏
  • 代码片获得20,698次分享
  • 博客总排名350,346名
创作历程
  • 9篇
    2021年
  • 37篇
    2020年
  • 40篇
    2019年
成就勋章
TA的专栏
  • JDNLP
    9篇
  • 各种error总结
    11篇
  • 历程
    21篇
  • pytorch
    5篇
  • 实习记录
    1篇
  • Julia
    3篇
  • 算法
    20篇
  • 其他
    9篇
  • CS224N
    3篇
  • Deep Learning
    3篇
  • 机器学习算法
    20篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 1

兴趣领域 设置
  • 人工智能
    机器学习深度学习自然语言处理pytorchnlp
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

39人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

概率生成模型-朴素贝叶斯(Naive Bayes)

1 前置概念先验概率:在不知道事务特征的情况下,根据以往的经验,判断出这件事发生的概率,这个概率就是先验概率,即: 后验概率:与先验概率相对应,是知道了事务特征判断出来的从而得出的事件发生的概率就是后验概率,即: 联合概率:两件事同时发生的改率,比如A发生且B发生,可以写作: 贝叶斯定理:贝叶斯定理起初是为了解决逆概率的问题,通过现象倒推本质,比如,如果在一个黑箱里摸球,箱中有3个红球7个黑球,可以轻易得出摸出红球的概率是0.3,现在假设不知道盒中有多少个黑球多少个红球,通过不断的摸球,不断的计算
原创
博文更新于 2023.01.25 ·
4225 阅读 ·
5 点赞 ·
1 评论 ·
15 收藏

linux 查看文件开头几行、末尾几行、中间几行

查看整个文件cat [filename]例如:查看/home/user/test.txtcat /home/user/test.txt查看开头几行head -n [rows] [filename]例如:查看/home/user/test.txt的前20行head -n 20 /home/user/test.txt查看末尾几行tail -n [rows] [filename]例如:查看/home/user/test.txt的最后10行tail -n 10
原创
博文更新于 2023.01.19 ·
20129 阅读 ·
10 点赞 ·
3 评论 ·
48 收藏

pytorch LSTM的股价预测

股价预测一直以来都是幻想能够被解决的问题,本文中主要使用了lstm模型去对股价做一个大致的预测,数据来源是tushare,非常感谢tushare的数据!!为什么要用LSTM?LSTM是一种序列模型,是RNN中最典型的一个网络结构,对RNN做了一些改进同时具有RNN的特性,可以更好的处理时序数据。如果可以实现对股价的预测,作为一个股民,可以更好的掌握买卖点,以及辅助自己做决策等等,以此提高自己的收益率。你可以合理地决定什么时候买股票,什么时候卖股票来获利。这就是时间序列建模的用武之地。你需要一个好
原创
博文更新于 2023.01.19 ·
17220 阅读 ·
18 点赞 ·
22 评论 ·
191 收藏

cs229线性回归和逻辑回归总结

假设函数(Hypotheses function)首先应该设计一个假设函数,这个假设函数是用来表示一个线性回归的问题,不是一个单独的函数,而是一个函数集合,包含很多个有可能可以很好的表示这个线性回归问题的函数,也就是通常所说的model。一般来讲线性回归的假设函数我们表示成这个样子:其中是第i个特征,是第i个特征的权重,是bias偏移量。为了将这个式子更加简化,可以将用代替,其中,因此我们可以写成向量相乘的形式:,其中和都是向量,,以上是线性回归的假设函数。...
原创
博文更新于 2022.09.04 ·
722 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

Bagging与Boosting的区别与联系

1 Bagging与Boosting的区别与联系Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好。1.1 Bagging介绍用抽样的方式从原始样本中进行有放回的多次抽样(或者是抽特征),这种方法叫做Bootstraping,抽取k次每次抽取n个样本,这样就生成了k个样本容量为n的数据集。原始数据集中的样本可能是多次被抽到也可能是没有被抽到。 每次使用一个数据即选练得到一个模型,这样k个数据集就可以得到k个模
原创
博文更新于 2022.07.04 ·
27293 阅读 ·
90 点赞 ·
3 评论 ·
443 收藏

0x3f3f3f3f是什么意思???

ACM中常用的无穷大常量——0x3f3f3f3f最近做题看题解的时候发现在大佬的题解报告中常会出现这么一行:↓↓↓const int inf = 0x3f3f3f3f;然后我就去探索了一下,0x3f3f3f3f的十进制是1061109567,是10^9级别的,而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。一般dfs或者dp求最小值......
原创
博文更新于 2022.06.29 ·
40867 阅读 ·
118 点赞 ·
10 评论 ·
327 收藏

Python读取文件时出现UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x80 in position ...

with open(self.path, 'r') as test: for line in test: pass代码如上,出现错误:UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position ...UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 9: ...或者是UnicodeDecodeErr..
原创
博文更新于 2022.06.29 ·
66068 阅读 ·
67 点赞 ·
15 评论 ·
110 收藏

rasa 中文 UnsupportedLanguageError: component ‘LanguageModelTokenizer‘ does not support language ‘zh‘.

LanguageModelTokenizer组件已被弃用,部分原因是它无法处理非空白标记化的语言,如中文。可以使用JiebaTokenizer代替。# Configuration for Rasa NLU.# https://rasa.com/docs/rasa/nlu/components/language: zhpipeline:# # No configuration for the NLU pipeline was provided. The following default pi
原创
博文更新于 2021.05.21 ·
1701 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

pandas.errors.ParserError: Error tokenizing data. C error: EOF inside string starting at line xxx

import pandas as pddata = pd.read_csv('data.txt', sep='\t')报错:pandas.errors.ParserError: Error tokenizing data. C error: EOF inside string starting at line xxx改为:import pandas as pdimport csvdata = pd.read_csv('data.txt', sep='\t', error_bad_l.
原创
博文更新于 2021.03.16 ·
940 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

两个相互独立的正态分布相乘,均值和方差的关系 EAB=EA*EB DAB=E(AB)^2-(EAB)^2 其中E(AB)^2等于ab*f(a,b)从负无穷到正无穷的积分

发布动态 2021.03.10

transformer encoder

发布动态 2021.03.09

AttributeError: ‘_IncompatibleKeys‘ object has no attribute ‘cuda‘

完整报错信息如下:Traceback (most recent call last): File "bert.py", line 172, in <module> output = predict('../../../data/end2end/title_content5.csv', model_path='../../../data/end2end/bert.pth') File "bert.py", line 149, in predict model = mo
原创
博文更新于 2021.03.05 ·
2168 阅读 ·
7 点赞 ·
4 评论 ·
6 收藏

为什么交叉熵损失函数可以用作逻辑回归的损失函数?

什么是熵?什么是KL散度?什么是交叉熵?
原创
博文更新于 2021.03.04 ·
1183 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

pytorch 存取模型(待补充)

# 直接保存模型# 保存模型torch.save(model, 'model.pth')# 加载模型model = torch.load('model.pth')# 保存模型参数和结构# 保存模型参数torch.save(model.state_dict(), 'model.pth')# 加载模型参数model.load_state_dict(torch.load('model.pth')# cpu模型加载gpu模型参数model.load_state_dict(torch.load
原创
博文更新于 2021.02.25 ·
370 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AttributeError: ‘torch.return_types.max‘ object has no attribute ‘dim‘

out1 = torch.max(out1, 1) # (batch, embedding_size)out1 = self.linear(out1) # (batch, linear_hidden_size)抛出错误 File "/diske/Anaconda3/envs/pytorch1.4/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl result = self..
原创
博文更新于 2021.01.22 ·
5365 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Macbook安装brew

/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"亲测可用
原创
博文更新于 2021.01.12 ·
326 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SyntaxError: Non-ASCII character ‘\xe4‘ in file baseline.py on line 18, but no encoding declared;

出现错误:SyntaxError: Non-ASCII character '\xe4' in file baseline.py on line 18, but no encoding declared; see http://www.python.org/peps/pep-0263.html for details解决办法:在文件开头加入 #-*-coding:utf-8 -*-# 出现错误File "baseline.py", line 18SyntaxError: Non-ASCII c
原创
博文更新于 2021.01.07 ·
321 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ValueError: expected sequence of length 791 at dim 1 (got 185)

File "baseline.py", line 25, in <module> input_id = torch.tensor(tokens2ids)ValueError: expected sequence of length 791 at dim 1 (got 185)list维度不一样,检查一下维度应该是input_id = torch.tensor(padded_ids)
原创
博文更新于 2021.01.06 ·
4095 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

过拟合的原因以及如何解决

如何判断过拟合?简单来说就是当模型在训练集上的表现效果非常好,并且远好于在测试集上的表现效果,那基本就是过拟合了。如果在训练集上表现都不好,很可能是欠拟合,,,过拟合的原因?1. 数据特征过多,而数据量不足。对于回归类的算法而言,特征越多意味着参数数量越多,模型也就越复杂,而相比之下如果数据量不足会导致过拟合,也就是模型复杂度与数据量不匹配。2. 训练集和测试集的数据特征、分布不够相似,这一点根本原因也是训练集过小,在总体样本中,训练集和测试集只占很小一部分,这就导致很难保证训练集和测试集与
原创
博文更新于 2020.06.07 ·
5112 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

算法竞赛位运算应用

开头先说一道2018河北省省赛的题。神殿icebound通过勤工俭学,攒了一小笔钱,于是他决定出国旅游。这天,icebound走进了一个神秘的神殿。神殿由八位守护者守卫,总共由64个门组成,每一道门后都有一个迷宫,迷宫的大小均为100×100。icebound在迷宫中总共耗时T小时,消耗食物K公斤。历经千辛万苦之后,icebound终于穿越了迷宫,到达了神殿的中心。神殿的中心有一个宝箱。...
原创
博文更新于 2019.05.08 ·
335 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多