小胡说人工智能
码龄10年
求更新 关注
提问 私信
  • 博客:716,144
    社区:14
    动态:29,601
    视频:7,371
    753,130
    总访问量
  • 232
    原创
  • 13,979
    粉丝
  • 79
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2015-09-08

个人简介:工作了10余年,刚步入中年危机。寻求用AI突破自己,也希望能用微薄之力,帮助到喜欢人工智能的伙伴们。

博客简介:

小胡说人工智能的博客

博客描述:
科技改变生活!致力于分享ChatGPT、图像处理、语音交互等前沿人工智能技术
查看详细资料
个人成就
  • 获得1,311次点赞
  • 内容获得212次评论
  • 获得4,358次收藏
  • 代码片获得25,038次分享
  • 博客总排名70,040名
  • 原力等级
    原力等级
    7
    原力分
    4,269
    本月获得
    8
创作历程
  • 2篇
    2025年
  • 4篇
    2024年
  • 214篇
    2023年
  • 3篇
    2022年
  • 9篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • ChatGPT
    92篇
  • AI绘图
    3篇
  • 深度学习
    64篇
  • ChatGPT商业应用
    28篇
  • 提示工程
    3篇
  • 无人机项目应用
    5篇
  • 机器学习
    40篇
  • 推荐系统
    13篇
  • 大数据分析
    19篇
  • NLP
    14篇
  • APP
    1篇
  • 程序人生
    1篇
  • AR
    1篇
  • VR
    1篇
  • 学习路线
    115篇
  • 无人驾驶
    3篇
  • 机器人
    7篇
  • ROS
    1篇
  • 无人机
    2篇
  • 图像识别
    39篇
  • 语音交互
    11篇

TA关注的专栏 4

TA关注的收藏夹 0

TA关注的社区 13

TA参与的活动 20

兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

深度剖析:Dify+Sanic+Vue+ECharts 搭建 Text2SQL 项目 sanic-web 的 Debug 实战

sanic-web 是一个轻量级、支持全链路且易于二次开发的大模型应用项目,基于 Dify、Ollama&Vllm、Sanic 和 Text2SQL 等技术构建,项目在开发过程中遇到了一些问题,如 Dify_service handle_think_tag 报错 NoneType、Dify 调用不成功、前端 markdown 格式只显示前 5 页以及 Dify 超时 60 秒等。通过修改代码、调整端口号、重新构建镜像和更新配置文件等方式,逐步解决了这些问题,确保了项目的正常运行。
原创
博文更新于 2025.05.16 ·
1612 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

DeepSeek Distill-Qwen vs GGUF:谁才是你的最佳AI模型选择?

本文深入探讨了Distill-Qwen和GGUF两种人工智能模型在应用、编程辅助和部署方面的对比。Distill-Qwen通过模型蒸馏技术,实现了高效的推理能力,尤其在资源受限的环境中表现出色,适用于多种场景,如学生学习、编程辅助等。GGUF则通过高效的存储格式和量化技术,优化了模型的部署和运行效率,特别适合在资源受限的设备上使用。与此同时,DeepSeek作为新兴的AI技术公司,其模型在性能和效率上展现出显著优势,甚至在某些测试中超越了行业巨头。
原创
博文更新于 2025.02.12 ·
1723 阅读 ·
12 点赞 ·
0 评论 ·
23 收藏

百度开源语音识别强大工具PaddleSpeech从0到1快速上手:安装、部署、Debug与测试详尽指南

掌握语音识别,从百度PaddleSpeech开始!本文详细介绍了PaddleSpeech的环境搭建、安装步骤和实用代码示例,助您轻松入门语音识别技术。面对安装难题?别担心,我们提供了详尽的故障排查指南。一文在手,让您快速启动语音识别项目,开启AI语音世界的大门。
原创
博文更新于 2024.10.24 ·
5539 阅读 ·
31 点赞 ·
0 评论 ·
31 收藏

孙燕姿谈“AI孙燕姿”:她的反应让人意外,深入体验揭示其背后的真相与潜力!

深入探讨AI歌手的技术原理,以及近日火遍全网的“AI孙燕姿”,同时探讨AI歌手是否会取代流行歌手成为主流,以及孙燕姿对“AI孙燕姿”的看法。希望这篇博客能够帮助大家更好地了解AI歌手。
原创
博文更新于 2024.06.12 ·
1199 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(三)

本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。
原创
博文更新于 2024.01.02 ·
1667 阅读 ·
22 点赞 ·
3 评论 ·
19 收藏

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(二)

本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。
原创
博文更新于 2024.01.01 ·
1763 阅读 ·
21 点赞 ·
0 评论 ·
24 收藏

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(一)

本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。
原创
博文更新于 2024.01.01 ·
2093 阅读 ·
28 点赞 ·
0 评论 ·
26 收藏

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别-深度学习算法应用(含工程源码)+数据集+模型

发布资源 2023.12.28 ·
rar

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
1979 阅读 ·
31 点赞 ·
0 评论 ·
28 收藏

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
2209 阅读 ·
32 点赞 ·
0 评论 ·
23 收藏

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
1386 阅读 ·
18 点赞 ·
0 评论 ·
24 收藏

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
1624 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
3058 阅读 ·
44 点赞 ·
0 评论 ·
51 收藏

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。
原创
博文更新于 2023.12.19 ·
2388 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

原力榜19了,加油

发布动态 2023.12.15

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别-深度学习算法应用(含全部工程源码)+数据集+模型

发布资源 2023.12.14 ·
rar

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(四)

本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移动端实现对不良驾驶行为的识别功能。总的来说,项目结合了深度学习、图像处理和移动端技术,致力于实现对不良驾驶行为的智能化识别,为提升驾驶安全提供了一种创新的解决方案。
原创
博文更新于 2023.12.13 ·
2323 阅读 ·
22 点赞 ·
0 评论 ·
22 收藏

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(三)

本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移动端实现对不良驾驶行为的识别功能。总的来说,项目结合了深度学习、图像处理和移动端技术,致力于实现对不良驾驶行为的智能化识别,为提升驾驶安全提供了一种创新的解决方案。
原创
博文更新于 2023.12.13 ·
1613 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(二)

本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移动端实现对不良驾驶行为的识别功能。总的来说,项目结合了深度学习、图像处理和移动端技术,致力于实现对不良驾驶行为的智能化识别,为提升驾驶安全提供了一种创新的解决方案。
原创
博文更新于 2023.12.13 ·
1783 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(一)

本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移动端实现对不良驾驶行为的识别功能。总的来说,项目结合了深度学习、图像处理和移动端技术,致力于实现对不良驾驶行为的智能化识别,为提升驾驶安全提供了一种创新的解决方案。
原创
博文更新于 2023.12.13 ·
2147 阅读 ·
28 点赞 ·
1 评论 ·
28 收藏
加载更多