Clf丶忆笙
码龄11年
求更新 关注
提问 私信
  • 博客:872,896
    社区:377
    动态:747
    874,020
    总访问量
  • 1,019
    原创
  • 1,470
    排名
  • 7,565
    粉丝
  • 16
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
加入CSDN时间: 2015-04-27

个人简介:倔强技术人,代码写得稀烂,博客更新不断。坚持用“菜”证明:我还能再抢救一下!

博客简介:

本博客聚焦 YOLOv11 全流程落地,涵盖架构优化、数据集处理、训练技巧与多场景部署,兼及国产数据库、Java 开发与 AI 模型应用,内容兼顾理论与工程实践,为开发者提供系统干货,助力高效提升技术能力。

博客描述:
本博客专栏聚焦技术实战落地,核心围绕 YOLOv11 目标检测,涵盖架构优化、数据集处理、训练调优与多场景部署;同时分享国产数据库核心原理、Java 开发实践及 AI 模型应用,内容兼顾理论深度与工程实用性,为技术爱好者与开发者提供系统干货
查看详细资料
个人成就
  • 优质创作者: Java、人工智能技术领域
  • 获得13,621次点赞
  • 内容获得77次评论
  • 获得11,783次收藏
  • 代码片获得3,781次分享
  • 原力等级
    原力等级
    7
    原力分
    4,464
    本月获得
    328
创作历程
  • 1005篇
    2025年
  • 1篇
    2022年
  • 3篇
    2020年
  • 11篇
    2018年
  • 2篇
    2017年
成就勋章
TA的专栏
  • YOLOv11 全栈指南:基础到魔改实战
    付费
    83篇
  • YOLOv11全栈指南:从零基础到工业实战
    付费
    219篇
  • YOLOv11 工业级实战手册
    付费
    116篇
  • OceanBase教程
    付费
    110篇
  • 50 天 Python 闯关教程
    付费
    34篇
  • SpringBoot从入门到精通
    付费
    192篇
  • 华为GaussDB数据库教程
    付费
    83篇
  • AI 人工智能开发全栈教程
    付费
    31篇
  • Java入门到精通
    86篇
  • 达梦数据库DM8全栈教程
    42篇
  • PostgreSQL专栏
    2篇
  • Linux运维
    1篇
  • DeepSeek全面解析
    3篇
  • 前端基础
  • 临时库
    4篇
  • HTML基础
    1篇
  • CSS基础
    2篇
  • JavaScript基础
    1篇
  • 活动参与文章
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 21

TA的推广
兴趣领域 设置
  • Java
    javatomcathibernatespringkafkajava-eespring bootspring cloudmybatissentineljava-zookeeperjava-rabbitmqjava-activemqjava-rocketmq
  • 编程语言
    pythonjavajavascript
  • 大数据
    rabbitmqpostgresql数据库oceanbase
  • 前端
    jsonhtml5javascriptjquerycssajaxbootstrapcss3echartsvue.jslayuihtml
  • 后端
    mysql
  • 人工智能
    目标检测YOLO
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

YOLO11训练日志解读:损失曲线、mAP、Recall分析,讲解如何从训练日志中识别过拟合、欠拟合,以及如何调整学习率等参数

摘要 本文详细介绍了YOLOv11目标检测模型的训练日志分析方法。主要内容包括:训练日志的重要性及其组成(损失值、评估指标、学习率等);如何获取和保存训练日志;损失曲线分析(理想形态与常见问题);以及可视化工具的使用(内置绘图和TensorBoard)。文章通过代码示例展示了YOLOv11的训练配置和日志监控方法,为开发者提供了从零基础到工业实战的实用指南,帮助诊断和优化模型训练过程。
原创
博文更新于 5 小时前 ·
3 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLO11学习率调度器Cosine, Linear, OneCycle j详解:对比不同学习率调度器的原理、适用场景和配置方法

摘要 本文系统介绍了深度学习中的学习率调度器技术,重点解析了Cosine学习率调度器及其变体。学习率调度器通过动态调整学习率来优化模型训练过程,在YOLO11等目标检测模型中尤为重要。文章首先阐述了学习率的核心地位和调度器的基本概念,然后详细讲解了Cosine调度器的数学原理和实现方法,包括其平滑下降特性带来的训练优势。此外,还介绍了带重启的Cosine退火、热身阶段Cosine等实用变体,以及这些方法在计算机视觉任务中的应用价值。最后通过对比不同调度器的特点,为实际应用提供了选择建议。
原创
博文更新于 5 小时前 ·
5 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv11的联邦学习梯度压缩-(减少通信开销的Secure Aggregation)

本文介绍了联邦学习与YOLOv11目标检测模型的结合应用,重点分析了梯度压缩技术。主要内容包括:1)联邦学习的核心概念与技术挑战;2)YOLOv11模型架构特点及其在联邦学习中的适配考量;3)安全聚合技术原理;4)针对YOLOv11提出的深度梯度压缩算法(DGC-YOLO),采用分层压缩策略、动量因子修正和局部梯度裁剪等方法。文章通过理论分析和代码示例,展示了如何在大规模参数模型下实现高效、安全的分布式训练。
原创
博文更新于 5 小时前 ·
83 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

YOLO11下采样方法对比:跨步卷积 vs 池化层 vs 跨步池化,系统对比不同下采样方法在Backbone中的表现,包括计算效率、信息保留程度和训练稳定性

跨步卷积是YOLO11中最常用的下采样方法,通过设置卷积步长>1实现特征图降维。相比池化层,跨步卷积能同时完成特征提取和空间压缩,具有参数学习能力。YOLO11中采用Conv模块实现跨步卷积,包含卷积、批归一化和SiLU激活。实验表明,跨步卷积在保持检测精度同时显著提升计算效率,是目标检测模型下采样的优选方案。
原创
博文更新于 昨天 07:00 ·
5 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLO11 Backbone归一化层改进:实例归一化IN的风格不变性探索,在Backbone浅层尝试使用IN,研究其提供的风格不变性是否对域自适应和图像风格变化有积极作用

本文探讨了深度学习中的归一化技术及其在YOLO11中的应用。首先分析了内部协变量偏移问题及其对训练的影响,介绍了批归一化(BN)等主流归一化方法的原理与实现。重点比较了BN与实例归一化(IN)的差异,指出IN在风格迁移等任务中的优势。文章还讨论了归一化层在计算机视觉中的作用,包括加速收敛、提高泛化能力等。最后展望了归一化技术在未来深度学习发展中的潜力,为YOLO11等目标检测模型的优化提供了理论支持。
原创
博文更新于 昨天 07:00 ·
145 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

YOLOv11的模型混淆防御(Model Obfuscation):防止逆向工程提取模型逻辑

本文介绍了YOLOv11模型混淆防御技术,主要包括静态混淆和动态混淆两种方法。静态混淆通过参数线性变换和结构重组实现,动态混淆则采用运行时随机化策略。文章详细阐述了混淆技术的原理、实现方式以及在YOLOv11中的具体应用,包括参数变换、虚假节点注入、动态分片计算等技术细节。同时分析了模型混淆面临的挑战,如结构复杂性、性能约束等问题,并提出了混合混淆策略的解决方案。这些技术能有效保护模型知识产权,防止模型被逆向工程或恶意攻击。
原创
博文更新于 昨天 07:00 ·
238 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

YOLOv11 FPGA加速器是一个基于FPGA的高性能目标检测系统

发布资源 前天 00:03 ·
zip

YOLO11模型尺寸选择(n/s/m/l/x): 介绍并对比不同模型尺寸的参数量、计算量、适用场景

YOLO11系列提供五种精细化的模型尺寸(nano至extra-large),满足不同场景需求。YOLO11n(1.9M参数/4.5GFLOPs)专为移动/嵌入式设备设计,YOLO11s(7.2M/16.5GFLOPs)平衡速度与精度,适合边缘计算。模型通过调整网络深度、宽度和输入分辨率实现差异化,nano模型采用精简架构和416×416分辨率,small模型增强特征融合并使用512×512分辨率。选择需综合考虑硬件资源、实时性要求和检测精度,代码示例展示了模型加载与推理流程。该系列为从资源受限设备到高性能
原创
博文更新于 前天 07:00 ·
144 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

YOLO11预训练权重的选择与使用策略:讲解何时使用COCO预训练权重,何时从头训练,以及如何加载自定义预训练权重

YOLOv11预训练权重使用指南 本文介绍了YOLOv11预训练权重的基本概念和使用策略。预训练权重是在大型数据集上预先训练好的模型参数,能够加速训练过程并提升性能。YOLOv11提供多种预训练权重,包括COCO数据集训练的通用权重和特定领域权重,以及不同模型尺寸(nano到extra large)的权重选择。文章重点分析了COCO数据集的特点及其预训练权重的适用场景,指出COCO权重适用于通用目标检测任务,能提供良好的初始性能和快速收敛。同时比较了预训练权重与从头训练的差异,强调预训练模型在数据需求、计算
原创
博文更新于 前天 07:00 ·
138 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

YOLO11 Backbone初始化策略:Kaiming初始化与Leaky ReLU的匹配原理

本文深入探讨了深度学习中的权重初始化问题,重点分析了Kaiming初始化方法及其在YOLO11 Backbone中的应用。文章首先阐述了权重初始化的重要性,指出不当初始化会导致梯度消失/爆炸、激活函数饱和等问题。随后详细介绍了Kaiming初始化的数学原理,包括其针对ReLU/Leaky ReLU激活函数的特殊设计,通过调整权重方差来保持信号传播稳定性。文中还对比了不同初始化方法的适用场景,指出Kaiming初始化特别适合YOLO11这类使用Leaky ReLU的深层网络。
原创
博文更新于 前天 07:00 ·
10 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLO11训练环境配置:PyTorch与CUDA安装全面指南(从零开始的深度学习环境搭建教程)(二)

本文介绍了YOLO11训练环境中Python版本的配置策略,重点探讨了版本选择、兼容性分析和版本管理方法。文章对比了Python 3.7-3.11各版本特性与适用场景,推荐根据PyTorch版本选择兼容的Python版本(如PyTorch 2.0.1支持Python 3.8-3.11)。提供了三种选择策略:基于PyTorch版本、操作系统默认版本或性能需求,并详细介绍了通过pyenv管理多版本Python的方法。兼容性分析包括检查PyTorch官方文档、依赖库PyPI页面以及操作系统支持情况,帮助开发者搭建
原创
博文更新于 2025.12.17 ·
93 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

YOLO11训练环境配置:PyTorch与CUDA安装全面指南(从零开始的深度学习环境搭建教程)(一)

YOLO11目标检测模型的训练环境配置需要重点关注GPU硬件选择、CUDA版本兼容性及系统准备。NVIDIA GPU是首选,需考虑计算能力(建议≥6.0)和显存大小(建议8GB起)。环境配置面临版本兼容性、硬件多样性等挑战,建议通过虚拟环境隔离依赖,并遵循系统化的安装验证流程。关键组件包括PyTorch框架、CUDA并行计算平台和cuDNN深度学习库,三者需版本匹配才能确保训练效率。
原创
博文更新于 2025.12.17 ·
159 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

YOLO11 Backbone的神经架构搜索基础:One-Shot NAS实战

本文介绍了神经架构搜索(NAS)技术及其在YOLO11 Backbone优化中的应用。首先阐述了NAS的定义、意义及分类方法,重点分析了One-Shot NAS的高效搜索策略。详细讲解了One-Shot NAS的核心思想、超网络设计原理及搜索空间定义,特别针对YOLO11 Backbone优化提出了包含卷积类型、注意力机制等关键维度的搜索空间。文章还探讨了NAS在目标检测领域的应用优势,指出One-Shot NAS特别适合YOLO系列模型的高效架构优化需求。
原创
博文更新于 2025.12.17 ·
401 阅读 ·
13 点赞 ·
0 评论 ·
0 收藏

YOLO11训练命令完全指南:python train.py参数全解析与实战技巧

YOLO11训练参数解析与最佳实践 本文全面解析YOLO11目标检测算法的训练参数配置,帮助开发者掌握从数据预处理到模型优化的关键设置。文章系统介绍了数据相关参数(数据集路径、图像尺寸、矩形训练等)、训练过程参数(批次大小、训练轮次等)、模型结构参数(预训练权重选择)、优化器参数以及学习率调度策略等核心配置项。通过参数分类详解和使用场景分析,为不同应用场景提供最佳实践建议,帮助开发者在模型精度和训练效率间取得平衡。文中包含丰富的示例代码和参数影响分析,适合从初学者到资深研究者的各级用户参考使用。
原创
博文更新于 2025.12.16 ·
18 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLO11 Backbone中的小波变换下采样:提升小目标检测性能的完整指南

本文介绍了小波变换在YOLOv11目标检测中的创新应用。首先阐述了小波变换的数学原理和常用基函数特点,重点分析了二维离散小波变换的多分辨率分解特性。随后对比了传统下采样方法(最大池化、平均池化、步长卷积)的局限性,特别是在小目标检测中易丢失高频细节的问题。文章着重探讨了小波变换下采样的两大优势:多分辨率分析能力和频域信息保留特性,能够同时捕获图像的整体结构和细节特征。这种基于小波变换的下采样方法为改进YOLOv11的Backbone结构提供了理论基础,尤其有利于提升小目标检测性能。
原创
博文更新于 2025.12.16 ·
90 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

YOLOv11数据增强之 mixup 与 cutmix 的区别与应用

本文介绍了计算机视觉中重要的数据增强技术Mixup和CutMix。Mixup通过线性混合两张图片及其标签($\tilde{x} = \lambda x_i + (1-\lambda)x_j$,$\tilde{y} = \lambda y_i + (1-\lambda)y_j$)来增强模型泛化能力。CutMix则采用区域替换策略,将一张图片的部分区域裁剪并粘贴到另一张图片上,同时按区域比例混合标签。文章详细阐述了两种方法的数学原理、实现步骤(含PyTorch代码示例)和参数选择建议(Mixup的α通常取0.4
原创
博文更新于 2025.12.16 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLO11数据增强之Mosaic增强:拼接方式详解与训练优势全面解析

Mosaic增强是YOLO系列中创新的数据增强技术,通过将四张训练图像拼接成一张新图像,显著提升模型对小目标和复杂场景的检测能力。其核心原理是将原始图像缩放后分别放置在合成图像的四个象限中,同时调整对应的边界框坐标。相比传统单图增强方法,Mosaic增强能同时增加数据多样性和训练样本复杂度,特别适用于密集小目标检测场景。标准实现中,合成图像尺寸为原图两倍,采用随机中心点划分四象限,并对每张子图进行自适应缩放和位置调整,最终生成包含多尺度、多上下文信息的训练样本。
原创
博文更新于 2025.12.15 ·
162 阅读 ·
4 点赞 ·
1 评论 ·
0 收藏

YOLOv11的M.2加速卡部署(如Hailo-8)-(边缘设备超低功耗推理方案)

本文介绍了YOLOv11在Hailo-8边缘AI加速卡上的部署优化方案。首先分析了边缘计算设备部署YOLOv11面临的计算资源、内存、功耗和实时性等核心挑战。然后详细解析了Hailo-8加速卡的架构特点和性能优势,包括26 TOPS算力、15W低功耗和M.2接口形态等。文章提出了针对YOLOv11的轻量化策略,包括骨干网络替换、通道剪枝、模型量化和知识蒸馏等技术,并给出了PyTorch实现示例。最后介绍了Hailo-8开发环境搭建和模型转换流程,为工业场景下的边缘AI部署提供了实用解决方案。(149字)
原创
博文更新于 2025.12.15 ·
309 阅读 ·
9 点赞 ·
0 评论 ·
0 收藏

YOLOv11的WebNN API浏览器推理-(下一代Web标准原生AI加速)

WebNN与YOLOv11结合实现了浏览器端高效目标检测。WebNN通过硬件抽象层提供跨平台加速,相比传统方案性能提升2-3倍。YOLOv11经过模型量化(FP32→INT8)后体积减少75%,推理速度提升2-3倍。开发时需配置支持WebNN的浏览器环境(Chrome/Edge 130+),将YOLOv11导出为ONNX格式并进行动态量化处理。前端工程使用onnxruntime-web和webnn-polyfill实现兼容部署,最终实现50ms内的低延迟检测,兼具高性能、隐私保护和低成本优势。
原创
博文更新于 2025.12.15 ·
258 阅读 ·
11 点赞 ·
0 评论 ·
0 收藏

YOLOv11数据准备阶段的完整检查清单

本文介绍了YOLOv11模型训练前的数据准备工作,包括数据收集与初步筛选。主要内容涵盖:1)公开数据集评估(COCO、Pascal VOC等)与选择标准;2)自定义数据收集方法(网络爬取、实地拍摄等);3)数据质量评估指标(分辨率、清晰度、曝光等)。文章提供了Python代码示例,帮助实现自动化数据收集和质量筛选。强调数据多样性、版权合规和隐私保护的重要性,为后续模型训练奠定高质量数据基础。
原创
博文更新于 2025.12.14 ·
111 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏
加载更多