站在墙头上
码龄11年
求更新 关注
提问 私信
  • 博客:226,468
    社区:1
    动态:1,039
    227,508
    总访问量
  • 100
    原创
  • 135
    粉丝
  • 38
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2014-08-17

个人简介:挣不到钱,只能发奋图强好好学习

博客简介:

站在墙头上的博客

查看详细资料
个人成就
  • 获得407次点赞
  • 内容获得79次评论
  • 获得673次收藏
  • 代码片获得2,943次分享
  • 博客总排名32,992名
  • 原力等级
    原力等级
    4
    原力分
    885
    本月获得
    0
创作历程
  • 21篇
    2025年
  • 2篇
    2024年
  • 6篇
    2023年
  • 6篇
    2021年
  • 65篇
    2020年
  • 6篇
    2019年
成就勋章
TA的专栏
  • 面试总结
    17篇
  • 技术开发
    35篇
  • Mysql
    7篇
  • java线程
    11篇
  • 队列
    2篇
  • Mybais
    5篇
  • 缓存
    2篇
  • Redis
    7篇
  • 工具类
    15篇
  • elasticsearch
    3篇
  • Docker
    5篇
  • SpringBoot
    20篇
  • jenkins
    3篇
  • websocket
    2篇
  • MongoDB
    8篇
  • 前端
    6篇
  • 闲唠
    2篇
  • Dubbo
    3篇
  • 设计模式
    1篇
  • Hibernate
    2篇
  • Maven
    2篇
  • idea
    1篇
  • 区块链
    1篇
  • SpringCloud
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

如何简单实现排行榜功能

不同方式实现排行榜
原创
博文更新于 2025.08.18 ·
1034 阅读 ·
22 点赞 ·
0 评论 ·
30 收藏

对于QPS的理解和简单

QPS(每秒查询数)是衡量系统吞吐量的核心指标,计算公式为总请求量除以请求总时间。不同QPS范围对应不同技术方案,如低QPS使用单机架构,高QPS需分布式+异步化。提升QPS的6大手段包括架构优化、并发调优、缓存加速、数据库优化、异步处理和流量控制。压测工具如JMeter/wrk可验证系统极限,需关注QPS与响应时间、并发数的关系。电商秒杀等高并发场景需采用Redis原子操作、限流削峰等策略。优化checklist涵盖缓存、SQL、线程池等关键点,典型案例显示优化可使QPS从800提升至12,000。
原创
博文更新于 2025.08.18 ·
959 阅读 ·
29 点赞 ·
0 评论 ·
29 收藏

git推送远程仓库报错:Bad configuration option: \357\273\277include

2. SSH 客户端无法识别开头的 BOM 字符,导致将。3. 最终导致 Git 无法通过 SSH 访问远程仓库。
原创
博文更新于 2025.08.15 ·
390 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

java虚拟机(JVM)以及各种参数详解

Java 虚拟机(JVM)提供了许多参数来调整其行为和性能,以便更好地适应不同的应用场景。理解和使用这些参数对于优化 Java 应用程序的性能非常重要。
原创
博文更新于 2025.03.12 ·
1115 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

java虚拟机各个模块说明

Java 虚拟机(JVM)是 Java 运行环境的核心组件,负责执行 Java 字节码并提供跨平台能力。这些模块共同协作,使得 JVM 可以高效地执行 Java 应用程序,并提供强大的内存管理和跨平台支持。了解 JVM 的内部机制对于优化 Java 应用程序的性能和解决复杂问题至关重要。文件到内存中,并将其转化为 JVM 可以使用的类对象。:自动管理内存,回收不再使用的对象,避免内存泄漏。
原创
博文更新于 2025.03.12 ·
956 阅读 ·
25 点赞 ·
0 评论 ·
13 收藏

如何发现并处理mysql的慢sql

发现和处理MySQL中的慢SQL是优化数据库性能的重要步骤。通过以上步骤,可以系统化地定位和解决慢SQL问题,显著提升数据库性能。
原创
博文更新于 2025.03.12 ·
1321 阅读 ·
26 点赞 ·
0 评论 ·
23 收藏

Mysql执行计划的返回结果解释

后,MySQL 会返回一张表格,每一行代表查询中的一个表,列则提供了关于该表的执行信息。的输出,可以识别出查询中潜在的性能瓶颈,从而进行针对性的优化,如添加适当的索引、重写查询语句等。语句用于分析 SQL 查询的执行计划,帮助开发者了解查询是如何执行的,从而进行优化。在 MySQL 中,
原创
博文更新于 2025.03.12 ·
552 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

商品秒杀系统的设计

理解这些名词和概念是设计和实现高效可靠的秒杀系统的基础。秒杀系统需要处理高并发、库存管理、用户体验优化等多方面的挑战。设计一个商品秒杀系统是一项复杂的任务,需要考虑到高并发、数据一致性、用户体验等多个方面。通过以上设计,可以构建一个基本的秒杀系统。具体实现过程中可能需要根据业务需求和技术栈进行调整和优化。在订单秒杀场景中,有一些常用的名词和术语,这些术语帮助我们理解和设计秒杀系统。
原创
博文更新于 2025.03.12 ·
1160 阅读 ·
19 点赞 ·
0 评论 ·
12 收藏

死锁的产生以及如何避免

策略适用场景优点缺点资源有序分配多锁交叉申请场景简单有效,预防循环等待需全局统一顺序,可能限制灵活性超时机制高并发、允许重试的场景避免无限等待,提升系统健壮性需处理超时重试逻辑无锁编程(CAS、原子类)低竞争、简单操作场景高性能,无死锁风险复杂逻辑实现困难事务回滚数据库、支持回滚的操作保证数据一致性实现成本高关键系统(如金融交易):优先使用资源有序分配和超时机制。高并发系统:减少锁粒度,采用无锁数据结构。复杂事务:结合事务管理和回滚机制。
原创
博文更新于 2025.03.07 ·
2204 阅读 ·
12 点赞 ·
0 评论 ·
18 收藏

如何找出jvm内存飙升的原因

找出JVM内存飙升的原因是一个系统性的过程,通常涉及对JVM内存模型的理解、监控工具的使用以及代码层面的分析。综上所述,找出JVM内存飙升的原因需要综合运用监控工具、内存分析工具和代码层面的优化技术。通过持续监控和性能测试,可以及时发现并解决内存飙升问题,确保应用的稳定性和性能。
原创
博文更新于 2025.03.07 ·
717 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

Kafka的各个组件说明

↑| (管理元数据)| ZooKeeper | 或 KRaft(内置Raft)通过上述组件协作,Kafka 实现了高吞吐、低延迟的消息传递,同时保障了数据的持久化、高可用与水平扩展能力。
原创
博文更新于 2025.03.07 ·
1386 阅读 ·
19 点赞 ·
0 评论 ·
32 收藏

分布式事务的理解和解决方案

分布式事务的需求源于确保分布式计算环境中多个独立系统或资源之间的数据一致性和可靠性的要求。在现代计算环境中,跨不同地理位置分离的资源需要维护数据完整性和一致性,而分布式事务正是解决这一问题的关键技术。综上所述,分布式事务是分布式系统中保证数据一致性和完整性的关键技术之一。在设计和实现分布式事务时,需要根据具体的业务场景和需求来选择合适的解决方案,并注意解决可能带来的问题和挑战。分布式事务是指一个事务跨越多个不同的数据库或服务节点,这些节点可能分布在不同的物理机器或多个不同的系统中。
原创
博文更新于 2025.03.07 ·
996 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

Mybatis的缓存机制

虽然MyBatis不提供所谓的“三级缓存”,但可以通过集成第三方缓存框架(如Ehcache、Redis等)来实现更复杂的缓存策略。这类缓存机制通常在应用级别实现,可以在更大的范围内共享缓存数据。MyBatis的缓存机制主要包括一级缓存和二级缓存,它们用于减少数据库访问次数,提高应用性能。
原创
博文更新于 2025.03.07 ·
348 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

Redis的CPU高达90%时如何处理

通过以上策略,可以有效地降低Redis的CPU使用率,提高系统的整体性能和稳定性。每个解决方案的适用性取决于具体的应用场景和Redis的使用模式,因此需要根据实际情况进行调整和优化。
原创
博文更新于 2025.03.05 ·
1325 阅读 ·
12 点赞 ·
0 评论 ·
3 收藏

多线程的常用包

在Java中,多线程编程是一个重要的主题,Java标准库提供了一些常用的包和类来支持多线程的开发。这些包和类提供了构建高效、多线程应用程序所需的基本工具。通过利用这些工具,你可以更容易地实现复杂的并发任务,确保线程安全和性能的优化。提供了一些原子变量类,这些类提供了一种以线程安全方式更新变量的方法,而无需使用锁。这是Java并发包,提供了更加强大和灵活的多线程支持。提供了锁和条件变量的框架。
原创
博文更新于 2025.03.05 ·
386 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

订单已经重复支付如何处理?

处理已经发生的重复支付需要及时识别问题、快速响应用户需求,并通过自动化和人工审核相结合的方式进行处理。同时,系统改进和优化是防止未来重复支付问题的关键。通过建立完善的流程和机制,确保用户体验和系统的稳定性。
原创
博文更新于 2025.03.05 ·
1448 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

订单支付系统如何做到一致性

实现订单支付系统的一致性需要综合使用多种技术和策略,包括分布式事务、事件驱动架构、补偿事务、幂等性设计以及定期对账等。每种方法都有其适用的场景和限制,选择合适的方案需要根据具体的业务需求和系统架构来决定。
原创
博文更新于 2025.03.05 ·
1166 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

如何提高接口响应效率

通过以上策略和最佳实践,可以显著提高接口的响应速度,提升用户体验和系统性能。根据具体的应用场景和需求,选择合适的优化方法进行实施。
原创
博文更新于 2025.02.07 ·
967 阅读 ·
11 点赞 ·
0 评论 ·
5 收藏

订单超时设计(2)--- 使用时间轮算法实现订单超时实时关闭功能

Redis:用于分布式锁和事件通知。时间轮算法:用于管理定时任务。
原创
博文更新于 2025.02.07 ·
1001 阅读 ·
17 点赞 ·
0 评论 ·
19 收藏

订单超时设计(1)--- 如何使用redis实现订单超时实时关闭功能

使用Redis实现订单超时实时关闭功能,可以利用Redis的延时队列(使用Sorted Set实现)和过期键(使用TTL和Keyspace Notifications)来实现。以下是一个示例说明如何实现这个功能。
原创
博文更新于 2025.02.07 ·
1214 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏
加载更多