基于机器学习深度学习的股票基金黄金量化交易预测系统-完整代码可直接运行

部署运行你感兴趣的模型镜像

视频讲解:

系统演示:

预测演示csdn

系统演示:

部分核心代码:

from flask import Flask, render_template, redirect, url_for, request, flash
from flask_login import LoginManager, login_user, login_required, logout_user, current_user
import database
import models

app = Flask(__name__)
app.secret_key = 'your_secret_key_here'  # 用于会话管理的密钥

# 配置Flask-Login
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'


@login_manager.user_loader
def load_user(user_id):
    return database.get_user(int(user_id))


@app.route('/')
def index():
    if current_user.is_authenticated:
        return redirect(url_for('dashboard'))
    return redirect(url_for('login'))


@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        username = request.form['username']
        password = request.form['password']

        user = database.get_user_by_username(username)
        if user and user.check_password(password):
            login_user(user)
            return redirect(url_for('dashboard'))
        else:
            flash('用户名或密码不正确')

    return render_template('login.html')


@app.route('/register', methods=['GET', 'POST'])
def register():
    if request.method == 'POST':
        username = request.form['username']
        password = request.form['password']
        confirm_password = request.form['confirm_password']

        if password != confirm_password:
            flash('两次输入的密码不一致')
            return render_template('register.html')

        # 去掉了邮箱相关代码
        if database.create_user(username, password):
            flash('注册成功,请登录')
            return redirect(url_for('login'))
        else:
            flash('用户名已被使用')

    return render_template('register.html')


@app.route('/logout')
@login_required
def logout():
    logout_user()
    return redirect(url_for('login'))


@app.route('/dashboard', methods=['GET', 'POST'])
@login_required
def dashboard():
    prediction_result = None
    error = None
    model_type = request.form.get('model_type', 'lstm')

    if request.method == 'POST':
        prediction_result, error = models.run_prediction(model_type)

    return render_template(
        'dashboard.html',
        user=current_user,
        prediction_result=prediction_result,
        error=error,
        selected_model=model_type
    )


if __name__ == '__main__':
    # 创建数据目录(如果不存在)
    import os

    if not os.path.exists('data'):
        os.makedirs('data')

    app.run(debug=True)

完整代码数据:

深度学习股票量化交易系统.rar深度学习股票量化交易系统.rar资源-CSDN下载

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

本项学术研究聚焦于运用Python编程语言构建一种基于长短期记忆网络(LSTM)的机器学习模型,旨在对股票基金市场的价格走势进行预测分析。该课题作为一项获得导师专业指导并顺利通过评审的优秀毕业设计成果,其内容架构与实现方案均符合高等教育机构对计算机及相关专业毕业设计的学术规范要求。 本项目特别适用于以下两类学习群体:一是正在筹备毕业设计的计算机类专业在校生,可为其实践环节提供完整的技术参考;二是亟需通过实际案例深化机器学习应用能力的开发者,能够作为进阶学习的实践素材。此外,该项目亦可适配课程设计或期末综合训练等教学场景的应用需求。 项目资源包涵完整的程序源代码及配套文档,其技术方案已通过系统性验证,所有功能模块均经过多轮测试,运行稳定性和代码可靠性得到充分保障。需要特别说明的是,本研究成果在保持模型架构先进性的同时,着重强化了数据预处理环节的严谨性,采用滑动窗口技术进行时序数据重构,并引入dropout机制防止过拟合现象。在特征工程方面,项目综合考量了历史价格序列、成交量变动趋势以及多项技术指标的多维关联,通过门控循环单元实现了对金融时间序列长期依赖关系的有效捕捉。 整个预测模型严格遵循机器学习项目开发流程,涵盖数据采集与清洗、特征筛选、参数调优、模型训练及性能评估等完整环节,其方法论体系对量化投资领域的实证研究具有参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
本资源提供一套基于长短期记忆神经网络(LSTM)的金融时序数据预测系统代码,作为一项在机器学习课程中取得优异成绩的综合性实践项目。该项目完整实现了利用深度学习技术对股票基金价格走势进行建模与预测完整流程,适用于计算机科学与技术、人工智能等相关专业的高年级本科生进行课程设计、毕业设计或项目实训。 系统核心采用递归神经网络中的LSTM架构,该模型特别适合处理时间序列数据,能够有效捕捉金融市场价格波动的长期依赖关系和非线性特征。项目内容包含完整的数据预处理模块、模型构建单元、训练验证流程及预测结果可视化组件,所有代码均采用模块化设计,结构清晰,注释详尽。 该实践项目经过多轮测试验证,确保在各主流深度学习框架环境下均可顺利部署运行代码包内含详细的环境配置说明和示例数据集,学习者可通过实际调试深入理解LSTM模型在金融预测领域的应用场景、优势特点及局限性。特别适合已有机器学习基础,希望进一步提升工程实践能力和金融数据分析经验的学生使用。 通过研究本项目,学习者将掌握时间序列预测的基本方法论、深度学习模型的实际部署技巧以及金融数据分析的完整工作流程,为后续从事人工智能量化投资领域的应用研究奠定扎实基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值