冻感糕人~
码龄2年
求更新 关注
提问 私信
  • 博客:1,491,967
    1,491,967
    总访问量
  • 1,084
    原创
  • 1,006
    排名
  • 8,861
    粉丝
  • 15
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2024-04-08
博客简介:

python12345_的博客

查看详细资料
个人成就
  • 获得22,060次点赞
  • 内容获得52次评论
  • 获得19,787次收藏
  • 代码片获得6,607次分享
  • 原力等级
    原力等级
    9
    原力分
    7,416
    本月获得
    305
创作历程
  • 547篇
    2025年
  • 538篇
    2024年
成就勋章
TA的专栏
  • python脚本
    21篇
  • Python
    29篇
  • Python知识
    6篇
  • Pytho教程
    16篇
  • Python入门
    5篇
  • Python0基础
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

收藏!一文吃透 AI 核心概念:LLM、Function Call、Agent 等,小白程序员也能懂

本文用最通俗的语言,帮大家拆解 LLM、Transformer、Prompt、Function Calling、MCP、Agent、A2A 等 AI 核心概念。不纠结学术严谨性,只求易懂好理解,部分内容包含个人实战总结,难免有疏漏,欢迎评论区指正~ 不管你是刚入门的小白,还是想补全 AI 知识体系的程序员,都能轻松看懂!
原创
博文更新于 3 小时前 ·
360 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

【收藏学习】LLM Agent实战指南:超越传统LLM的智能体架构与实现方法

要理解什么是 LLM Agent,首先我们需要回顾一下 LLM 的基本功能。传统上,LLM 的工作方式是通过预测下一个词元(token)实现的。在生成多个词元的过程中,模型逐步扩展输入内容,从而模拟对话,生成更长且更连贯的回应。然而,随着对话的进行,LLM 的一个主要缺点逐渐显现——它无法记住之前的对话内容!除了记忆缺失的问题外,LLM 在执行一些看似简单的常见任务时也经常犯错。例如,基础的数学运算如乘法和除法都可能出错。然而,这并不意味着 LLM 无法胜任这些任务。
原创
博文更新于 3 小时前 ·
421 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

收藏必备!小白也能学:大模型时代如何不被替代?解锁情感创造力与2个高薪AI岗位

如今技术圈降薪裁员频频爆发,传统岗位大批缩水,相反AI相关技术岗疯狂扩招,薪资逆势上涨150%,大厂老板们甚至开出70-100W年薪,挖掘AI大模型人才!技术的稀缺性,才是你「值钱」的关键!具备AI能力的程序员,比传统开发高出不止一截!有的人早就转行AI方向,拿到百万年薪!👇🏻👇🏻是不是也想抓住这次风口,但卡在 “入门无门”?小白:想学大模型,却分不清 LLM、微调、部署,不知道从哪下手?传统程序员:想转型,担心基础不够,找不到适配的学习路径?
原创
博文更新于 3 小时前 ·
311 阅读 ·
12 点赞 ·
0 评论 ·
6 收藏

【必读收藏】大模型技术成AI就业新宠:2026校招市场深度解析与学习指南

前程无忧报告显示,AI人才需求呈现结构性变革,高科技企业成为需求主力军,技术研发岗需求旺盛。企业评估标准向数学与算法基础、实际项目经验倾斜,大模型算法工程师月薪近2.5万。AI校招市场呈现"需求稳增、结构优化、薪酬分化"三大特征,具备扎实算法基础和项目经验的人才将更具竞争力。
原创
博文更新于 3 小时前 ·
601 阅读 ·
17 点赞 ·
0 评论 ·
6 收藏

【建议收藏】一文搞定RAG框架选型:RAGFlow/Dify/n8n/coze全方位对比与实战指南

本文聚焦RAG框架选型痛点,从场景复杂度、开发门槛、部署成本三大维度深度解析RAGFlow、Dify、n8n、coze四大主流框架,提供精准匹配方案和避坑指南,帮助企业避免80%的框架错配问题,实现RAG项目快速落地与高性价比部署。
原创
博文更新于 昨天 11:04 ·
703 阅读 ·
17 点赞 ·
0 评论 ·
11 收藏

【必收藏】普通人也能学会的AI Agent入门指南:从理论到实战搭建

文章介绍了普通人如何从零开始搭建自己的AI智能体。首先解释了AI Agent与普通AI的区别在于其"自主行动"和"任务执行"能力。然后通过"每日热点助手"案例,详细演示了在扣子平台上创建智能体的完整流程,包括界面设置、工作流配置和调试技巧。最后分享了让AI Agent更好用的2大技法和2大心法,帮助读者高效创建能自动处理任务的数字员工。
原创
博文更新于 昨天 11:02 ·
498 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

【值得收藏】转行AI必看:5大核心岗位、薪资与技能全攻略

AI不是来淘汰你的,而是来淘汰“不会用AI的你”的。转行的本质,是利用信息差进行降维打击。现在的AI行业,就像2010年的移动互联网,充满了泡沫,但也充满了黄金。不要等到所有人都准备好了再出发。现在的你,做一个Demo,改一份简历,你就已经跑赢了90%还在观望的人。
原创
博文更新于 昨天 11:00 ·
778 阅读 ·
22 点赞 ·
0 评论 ·
8 收藏

【收藏必看】2030年AI将创造1.7亿岗位!大模型工程师年薪50-300万,小白入门全攻略

世界经济论坛报告显示,到2030年AI领域将创造1.7亿就业机会,中国AI人才需求将达供应三倍,一线城市AI岗位月薪2.5-4万元。文章详细介绍了AI运营、算法工程师、大模型工程师等五大高薪岗位的工作内容、核心技能和薪资水平,并提供了从零基础到大厂初级算法工程师的三阶段学习路线,助力普通人快速进入AI高薪领域。下面贴上2025年未来就业报告,想详细了解可以去官网查看。
原创
博文更新于 昨天 10:58 ·
543 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

收藏!Java程序员转AI大模型:从入门到进阶的完整指南

AI大模型不是“替代程序员”,而是“赋能程序员”,Java程序员转型大模型,不是“放弃过去”,而是“升级未来”。你不需要成为算法专家,只需做好“Java基础+AI工具+实战项目”的组合,就能在新赛道中脱颖而出。与其在Java内卷中焦虑,不如花1-2个月打好AI基础,用一个实战项目开启转型之路。
原创
博文更新于 前天 10:59 ·
479 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

[特殊字符]大模型应用开发必备!LangGraph框架详解:构建复杂多智能体系统,建议收藏学习

LangGraph 是LangChain 生态的一部分,专门用于构建基于大模型(LLM)的复杂、有状态、多智能体应用的框架,核心思想是将应用的工作流程抽象为一个有向图结构,通过节点和边来定义任务的执行步骤和逻辑流,从而提供了远超传统线性链式调用的灵活性和控制力。相比传统的线性执行模式,LangGraph 支持条件分支、循环、并行等复杂控制流,能够实现状态持久化、断点续跑、时间旅行、人机协作等高级功能,并提供了多智能体协作、层级架构等多种架构模式。
原创
博文更新于 前天 10:52 ·
649 阅读 ·
21 点赞 ·
0 评论 ·
20 收藏

【收藏级教程】Transformer架构深度解析:从架构到实现的大模型学习路径

Transformer是一种革命性的深度学习模型架构,由编码器和解码器堆叠组成,核心是自注意力机制和多头注意力机制。它通过位置编码处理序列顺序,使用残差连接和层归一化提高训练稳定性。Transformer能够并行计算、有效捕捉长距离依赖,解决了RNN和CNN的局限性,成为现代大语言模型的基础架构。
原创
博文更新于 前天 10:49 ·
826 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

收藏这篇!一文读懂大模型三大技术:RAG、Agent与多模态实战指南

大模型通过RAG、Agent与多模态三大技术重塑AI交互边界。RAG解决静态知识时效性,Agent赋予自主决策能力,多模态技术实现跨模态理解。三者协同攻克数据隐私、专业适配等难题,推动行业效率革新与业务重构。未来将向全模态能力、复杂系统构建和垂类领域深度结合发展,催生新一代产业智能体,实现感知-认知-决策-执行的完整闭环。ML-Summit会议大模型内容分布RAG:大模型的动态知识引擎,解决模型静态知识边界、时效性与可信度问题。Agent:大模型的智能执行中枢,赋予模型自主规划、决策与工具调用能力。
原创
博文更新于 2025.12.17 ·
934 阅读 ·
22 点赞 ·
0 评论 ·
15 收藏

收藏!程序员转型大模型:不是从零开始,而是降维升级

当“大模型”从技术圈的高频热词,彻底变成企业招聘需求里的“硬指标”,不少深耕Java、Python多年的传统程序员陷入了职业抉择:是守着熟悉的业务逻辑和CRUD安于现状,还是借着AI浪潮完成职业跃迁?答案其实早已清晰——相较于零经验的入门者,程序员自带的编码基因、逻辑思维和系统认知,让他们成为大模型赛道最具优势的转型群体。这场转型从来不是“推倒重来”,而是“技术复用+能力延伸”的精准升级。从数据库优化到提示词工程,从接口开发到模型调用逻辑编写,程序员的现有技能在大模型领域有着大量适配场景。
原创
博文更新于 2025.12.17 ·
615 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

【强烈推荐】LangGraph核心概念解析:State管理+实战案例,一篇搞定大模型开发

State是什么:在整个流程中共享的数据容器基本用法:节点读取State,处理后返回更新的部分TypedDict:让代码更严谨,避免运行时错误Reducer机制:控制State的更新方式(覆盖、追加等):智能管理消息列表的专用Reducer实战应用:构建带记忆的聊天机器人掌握了这些,你就能灵活构建各种LangGraph应用了。
原创
博文更新于 2025.12.17 ·
801 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

收藏必备!一文读懂MCP协议:大模型与外部数据源的完美桥梁

文章详细介绍了MCP(模型上下文协议)这一由Anthropic推出的开放标准,旨在统一大模型与外部数据源、工具及服务的交互方式。文章解析了MCP的三大核心功能(资源、工具、提示词)、底层通信原理(JSON-RPC 2.0协议),并通过DW-DBA-MCP实战项目展示了其在数据库领域的应用。MCP解决了RAG和Function Calling的局限性,为AI应用提供了标准化接口和扩展能力,是构建AI基础设施的关键组件。在浅析 MCP 原理之前,有必要搞清楚两个问题:**MCP 是什么?为什么会出现?**以此明
原创
博文更新于 2025.12.16 ·
898 阅读 ·
28 点赞 ·
0 评论 ·
28 收藏

收藏!AI大模型应用开发工程师全景指南,小白&程序员必看

如果说AI大模型是蕴藏着巨大能量的“后台超级能力”,那么AI大模型应用开发工程师就是将这种能量转化为实用工具的执行者。AI大模型应用开发工程师是基于AI大模型,设计开发落地业务的应用工程师。这个职业的核心价值,在于打破技术与用户之间的壁垒,把普通人难以理解的算法逻辑、模型参数,转化为人人都能轻松操作的产品形态。
原创
博文更新于 2025.12.16 ·
833 阅读 ·
23 点赞 ·
0 评论 ·
7 收藏

收藏备用!35岁程序员转行大模型,这8步帮你落地

在技术迭代加速的今天,35岁程序员的职业转型不必困于“年龄焦虑”——大模型领域正敞开大门,等待有编程基础的开发者入局。相较于纯新人,有多年工程经验的你更懂技术落地逻辑,只要找对路径,转型绝非空谈。以下是经过行业老兵验证的实操指南,小白也能跟着一步步推进。
原创
博文更新于 2025.12.16 ·
564 阅读 ·
28 点赞 ·
0 评论 ·
5 收藏

收藏必读!大模型行业应用全攻略:从通用到垂直的技术落地指南

规模定律驱动通用大模型性能不断提升,同时也产生了“不可能三角”问题:专业性、泛化性和经济性三方面很难兼得。第一,专业性指大模型处理特定领域问题或任务的准确性与效率。专业性要求越高,越需要针对特定领域数据进行训练,可能造成模型过拟合而降低泛化能力。此外,增加的数据收集和训练也会增加成本、降低经济性。第二,泛化性指大模型处理训练数据集之外新样本的表现能力。
原创
博文更新于 2025.12.16 ·
617 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏

【深度收藏】小猫都能懂的大模型原理:从SFT到RLHF的完全指南

本文以通俗易懂的方式解释了大语言模型的训练原理,重点介绍了SFT(监督式微调)通过对话训练让模型学会交流,以及RLHF(基于人类反馈的强化学习)通过人类偏好排序和奖励模型使模型更符合人类期望。文章还探讨了Reasoning(推理能力)的实现方法,如GRPO训练策略,以及模型如何自发产生长思考和自我纠错的能力。整个过程旨在让模型从"只会背书的Nerd"转变为能流畅交流的助手。GPT 训练完后并不能直接与用户流畅地聊天,就像是一个只会背书、不擅长与人交往的 Nerd 🤓。
原创
博文更新于 2025.12.16 ·
638 阅读 ·
8 点赞 ·
0 评论 ·
17 收藏

收藏!2025大模型与AI Agent企业应用实战指南:从概念到规模化落地

大模型正引领AI从信息处理者升级为任务执行者,AI Agent已成为企业数字化转型的核心驱动力。2025年将是AI Agent规模化应用的关键转折点,企业应优先在高频、规则明确、数据丰富的场景试点,逐步积累经验。AI Agent具备自主规划、记忆、工具调用等核心能力,可应用于金融、医疗、制造等多领域,帮助企业实现全链条智能化升级,重塑生产关系和业务模式。
原创
博文更新于 2025.12.15 ·
1208 阅读 ·
9 点赞 ·
0 评论 ·
23 收藏
加载更多