-柚子皮-
码龄13年
求更新 关注
提问 私信
  • 博客:12,697,103
    社区:170,992
    问答:702
    12,868,797
    总访问量
  • 660
    原创
  • 11,130
    粉丝
  • 53
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2013-01-30

个人简介:╰☆ゞ不染纤尘,不忘初心ゞ☆╮

博客简介:

皮皮blog

博客描述:
Talk is cheap, Show me the code!
查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 领域专家: 数据科学与机器学习技术领域
  • 获得5,156次点赞
  • 内容获得776次评论
  • 获得22,417次收藏
  • 代码片获得2,450次分享
  • 博客总排名70,814名
  • 原力等级
    原力等级
    8
    原力分
    6,267
    本月获得
    7
创作历程
  • 1篇
    2025年
  • 22篇
    2023年
  • 2篇
    2022年
  • 13篇
    2021年
  • 22篇
    2020年
  • 22篇
    2019年
  • 4篇
    2018年
  • 73篇
    2017年
  • 137篇
    2016年
  • 161篇
    2015年
  • 229篇
    2014年
成就勋章
TA的专栏
  • ad
  • 搜索
  • 强化学习RL
    1篇
  • 深度学习DeepLearning
    38篇
  • 机器学习
    54篇
  • LLM
    14篇
  • Pytorch
    18篇
  • Git
    10篇
  • 主题模型
    19篇
  • 概率图模型
    26篇
  • ----------技术流-------------
  • Scikit-Learn
    15篇
  • 推荐系统Resys
    13篇
  • 召回
    2篇
  • PRML
    4篇
  • 机器学习公开课
    19篇
  • 分类 Classification
    13篇
  • 聚类 Clustering
    3篇
  • 序列数据
    10篇
  • 海量数据挖掘MMDS
    23篇
  • Tensorflow
    19篇
  • keras
    2篇
  • Spark
    8篇
  • Hadoop
    6篇
  • Docker
    9篇
  • NLP
    20篇
  • BigData
    4篇
  • Dataming
    1篇
  • 架构
    1篇
  • Math
    31篇
  • ----------Love Python---------
    1篇
  • Python
    38篇
  • Python类、函数和模块
    34篇
  • Python拓展包
    5篇
  • Numpy小记
    15篇
  • Scipy小记
    8篇
  • Matplotlib小记
    8篇
  • Pandas小记
    10篇
  • Networkx小记
    3篇
  • Sympy小记
    1篇
  • Django小记
    15篇
  • Python网络请求与爬虫
    8篇
  • PythonQT小记
    5篇
  • -------Language World---------
    1篇
  • C++
    36篇
  • Scala
    11篇
  • R
    1篇
  • Java
    11篇
  • Android
    24篇
  • Html
    11篇
  • Matlab
    3篇
  • assembly
    3篇
  • Perl
  • Database
    8篇
  • Linux
    41篇
  • windows
    13篇
  • ----------算法结构---------------
    1篇
  • Algorithm&Datastructure
    13篇
  • 大数据算法
    3篇
  • 编程之美
    9篇
  • OJ
    15篇
  • 逻辑之美
    2篇
  • Coding
    2篇
  • --------------OTH-------------
    34篇
  • Office
    18篇
  • Internet
    4篇
  • Mac
    2篇
兴趣领域 设置
  • 人工智能
    深度学习自然语言处理
Welcome to youzipi's blog~

<script src="https://s11.cnzz.com/z_stat.php?id=1259587897&web_id=1259587897"></script> <script type="text/javascript" src="https://blog.csdn.net//ri.revolvermaps.com/0/0/8.js?i=8w4b0n891ux&m=7&s=220&c=ff0000&cr1=ffffff&f=arial&l=33"></script>
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 收藏
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 收藏

  • 社区

  • 帖子

搜索 取消

C/C++集成开发环境搭建

http://blog.csdn.net/pipisorry/article/details/20291219jetbrains家的,不用介绍了哈,lz看到有它家的ide,必用!Clion: A cross-platform IDE for C and C++ [https://www.jetbrains.com/clion/]注意:没有java环境的要先安装java;同样也要安装cmake。下载[Download CLion: A Smart Cross-Platform IDE for C and C+
原创
博文更新于 2025.12.02 ·
2849 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

深度学习:词嵌入之word2vec

http://blog.csdn.net/pipisorry/article/details/76147604word2vec简介 深度学习在自然语言处理中第一个应用:训练词嵌入。Google 的 Tomas Mikolov 在《Efficient Estimation of Word Representation in Vector Space》和《Distributed ...
原创
博文更新于 2025.11.25 ·
10950 阅读 ·
9 点赞 ·
1 评论 ·
48 收藏

IKBC F108 白色背光普通版说明书

​首先按Fn + 1(如果编辑第 1 组效果的话),之后按Fn + Esc下面的那个点启动编辑模式,之后按按键调节灯光,完成后继续按Fn + Esc下面的那个点保存。之后可以按Fn + 1启动这组效果,可以继续按Fn + 1切换效果。默认是常亮,切换后可以为呼吸灯。Fn + 0。
原创
博文更新于 2025.10.21 ·
3924 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

hive:基础语法

- 表的定义,gender STRING -- COMMENT '性别';-- 快速创建有数据的临时表-- 不定义,直接继承创建-- 表的插入select *,appid(相对于ddl多出一个) from a;某条数据插入UNION ALLSELECT *;-- 表的修改--删除分区,需要一个个删除分区,分区全删了,表定义还在--删除分区,不添加到回收站--删除非分区表,表定义不删除?
原创
博文更新于 2025.10.10 ·
870 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Git版本控制:Git高级教程

http://blog.csdn.net/pipisorry/article/details/50669350Git有很多命令行参数,使用起来非常方便。可以运行man git log,来看一下这些参数的作用。本博客主要内容git大文件处理、文件比较、git blame用法、git log与git reflog[Git版本控制:Git查阅、撤销文件修改和撤销文件追踪]、文件改动相关、ch...
原创
博文更新于 2025.10.09 ·
12979 阅读 ·
6 点赞 ·
2 评论 ·
51 收藏

hive: 常用函数

常用内置udf函数。
原创
博文更新于 2025.09.25 ·
702 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++ string类及字符串处理

http://blog.csdn.net/pipisorry/article/details/36869741使用标准C++中string类必须要包含#include using std::string; using std::wstring;或using namespace std;下面你就可以使用string/wstring了,它们两分别对应着char和wchar_t。string和wst
原创
博文更新于 2025.09.18 ·
1384 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

c++ STL编程:vector容器

示例1:一维数组int b = 5;cout
原创
博文更新于 2025.09.18 ·
1836 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

pgn代码解析

代码解析。
原创
博文更新于 2025.09.18 ·
72 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

twitter rec

具体地,对边 e = (s, r, t),预测函数为:f(e) = f(s,r,t) = (𝜃𝑠 , 𝜃𝑟) ^T 𝜃𝑡。构建各种 entity 交互的图,抽取 user 和 tweets 的向量。embedding 采用预训练 graph embedding 和端到端训练的 embedding 的集合。对 user,在其有交互的非 user entity 的节点中,选出出现次数 topK 个聚类中心。预训练的 graph embedding,concat 上去,冻结,不随 dnn 一起训练。
原创
博文更新于 2025.09.18 ·
38 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow:tensor数据类型转换、计算和变换

示例import tensorflow as tfx = tf.constant([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])y = tf.constant([[[11, 12, 13], ...
原创
博文更新于 2025.09.01 ·
9145 阅读 ·
2 点赞 ·
1 评论 ·
11 收藏

Tensorflow:tfrecord数据读取和保存

TFRecord是TensorFlow推荐的二进制数据格式,采用protocolbuffer协议存储,具有高效内存利用和快速读取优势。其核心数据结构tf.train.Example支持三种数据类型:BytesList(字符串/字节)、FloatList(浮点数)和Int64List(整型/布尔值)。适用于大规模数据存储,通过tf.data.Dataset实现高效流水线读取。文中提供了Python读写TFRecord的完整代码示例,包括特征序列化、文件写入和Dataset解析方法,并讨论了常见错误处理方案(如
原创
博文更新于 2025.09.01 ·
3893 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习:分类、多分类、回归模型的评估

http://blog.csdn.net/pipisorry/article/details/52574156衡量分类器的好坏 对于二类分类器/分类算法,评价指标主要有accuracy, [precision,recall,F-score,pr曲线],ROC-AUC曲线,gini系数。 对于多类分类器/分类算法,评价指标主要有accuracy, [宏平均和微...
原创
博文更新于 2025.08.27 ·
71943 阅读 ·
26 点赞 ·
1 评论 ·
204 收藏

sql语法、特殊符号及正则表达式的使用

http://blog.csdn.net/pipisorry/article/details/46773545sql语言结构化的查询语言。(Structured Query Language),是关系数据库管理系统的标准语言。它是一种解释语言:写一句执行一句,不需要整体编译执行。语法特点:1.没有“ ”,字符串使用‘ ’包含2.没有逻辑相等,赋值和逻辑相等都是=3.类型不再是最严格...
原创
博文更新于 2025.08.26 ·
12010 阅读 ·
3 点赞 ·
0 评论 ·
12 收藏

概率论:假设检验

http://blog.csdn.net/pipisorry/article/details/51182843假设检验假设检验问题分为两类,一类是参数的假设检验,一类是分布的假设检验! 设总体X的分布未知,或 X的某个分布参数 theta未知,对总体分布或分布参数 theta 提出一个假设 "H0" ,然后根据样本所提供的信息,运用统计分析的方法进行判断,从而作出是接受还是拒绝 "H0"
原创
博文更新于 2025.08.21 ·
13567 阅读 ·
10 点赞 ·
0 评论 ·
42 收藏

关于softmax

Softmax函数是一种将多分类神经网络的输出转化为概率分布的关键函数。它通过指数运算将输入值归一化为[0,1]区间内的概率,且所有输出之和为1。该函数既模拟了max函数的特性(放大较大值),又保持可导性。在应用中,带温度参数T的变体可调节概率分布的平滑度。Softmax广泛用于多分类任务,其实现可通过PyTorch(torch.softmax)或SciPy(scipy.special.softmax)等库完成。该函数输出的概率可直接作为分类依据,是深度学习中的重要组成部分。
原创
博文更新于 2025.08.07 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

损失函数loss

http://blog.csdn.net/pipisorry/article/details/23538535监督学习及其目标函数 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部...
原创
博文更新于 2025.08.07 ·
30555 阅读 ·
14 点赞 ·
8 评论 ·
146 收藏

Sigmod/Softmax变换

softmax建模使用的分布是多项式分布,而logistic则基于伯努利分布。多个logistic回归通过叠加也同样可以实现多分类的效果,但是 softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类;多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别。
原创
博文更新于 2025.08.07 ·
13022 阅读 ·
4 点赞 ·
1 评论 ·
27 收藏

Tensorflow:可视化学习TensorBoard

TensorBoard是TensorFlow的可视化工具,主要用于展示计算图、训练指标和模型参数。通过tf.summary.scalar可记录标量数据(如损失值),需确保输入为rank-0张量;tf.summary.histogram用于展示张量分布,将任意形状张量展平后统计频数分布。TensorBoard还支持权重变化的多分位数可视化(DISTRIBUTIONS)和高维向量投影(Projector)。启动时需指定日志目录(--logdir),Estimator会自动记录训练指标。通过结合不同图表类型,Te
原创
博文更新于 2025.08.07 ·
2929 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

Tensorflow:print输出控制

微处理器、微型计算机、微型计算机系统有什么联系与区别?微处理器只是一个中央处理器(CPU),由算术逻辑部件(ALU),累加器和通用寄存器组,程序计数器,时序和控制逻辑部件,内部总线等组成。微处理器不能构成独立工作的系统,也不能独立执行程序。微型计算机由CPU,存储器,输入/输出接口电路和系统总线组成,具有计算功能,能独立执行程序,但不能显示或输出,仍不能正常工作。以微型计算机为主体
原创
博文更新于 2025.08.05 ·
16452 阅读 ·
6 点赞 ·
1 评论 ·
10 收藏
加载更多