enjoy编程
码龄19年
求更新 关注
提问 私信
  • 博客:1,570,943
    社区:320
    动态:420
    1,571,683
    总访问量
  • 548
    原创
  • 5,610
    排名
  • 48,689
    粉丝
  • 130
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2006-07-28

个人简介:Stay hungry, stay foolish.(求知若饥,虚心若愚。)10+IT行业老兵,熟悉大数据处理,分布式编程, 喜欢使用java、python解决工作、生活中的问题

博客简介:

penriver的博客

查看详细资料
个人成就
  • 领域专家: 大数据技术领域
  • 获得1,448次点赞
  • 内容获得300次评论
  • 获得4,141次收藏
  • 代码片获得8,286次分享
  • 原力等级
    原力等级
    9
    原力分
    9,831
    本月获得
    84
创作历程
  • 23篇
    2025年
  • 45篇
    2024年
  • 65篇
    2023年
  • 134篇
    2022年
  • 284篇
    2021年
成就勋章
TA的专栏
  • 程序员实用工具集合
    付费
    88篇
  • 网络安全学习
    付费
    59篇
  • 基于Datahub进行数据治理
    付费
    26篇
  • flink实战
    付费
    30篇
  • 知识图谱
    付费
    22篇
  • 少儿学编程
    付费
    22篇
  • AI
    39篇
  • NLP
    8篇
  • python3学习
    5篇
  • MPPDB
    26篇
  • 算法
    29篇
  • 数仓
    5篇
  • python
    32篇
  • 对象存储
    2篇
  • JAVA基础
    79篇
  • 大数据
    28篇
  • 数据库
    29篇
  • 视频剪辑
    1篇
  • 计算机视觉
    3篇
  • k8s+container
    11篇
  • zeppelin
    8篇
  • 微服务架构
    20篇
  • spark
    23篇
  • 运维开发
    7篇
  • 笔记
    2篇
  • 调度系统
    9篇
  • 分布式
    11篇
  • IoT
    3篇
  • 缓存
    4篇
  • 单元测试
    1篇
  • nebula
    6篇
  • 源码解析
    9篇
  • RocksDB
    5篇
  • scala
    4篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 11

TA参与的活动 7

兴趣领域 设置
  • 大数据
    hadoopsparketl
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Spring-AI WebClient 和 RestClient 用法解读

在 Spring 生态(特别是 Spring 6+)中,WebClient 和 RestClient 都是用来发起 HTTP 请求的客户端工具,它们正在逐步取代老旧的 RestTemplate。简单来说,WebClient 是为了高性能和未来的响应式架构而生,而 RestClient 是为了让传统的同步代码写起来更优雅、更简洁。
原创
博文更新于 2025.12.12 ·
84 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

JAVA JDK/JVM如何选择? 你还在用Oracle JDK嘛?

在 2025 年的今天,对于大多数开发者和企业来说,选择 Liberica、Adoptium (Temurin) 或基于 OpenJDK 的发行版,而不选 Oracle JDK,主要集中在“钱”、“省心”和“特定优化”这三个核心维度。简单来说,Oracle JDK 现在更像是一个卖给大企业的“商业服务产品”,而 OpenJDK 生态则是“免费且强大的社区标准”。目前有免费、开源、功能一样强且经过大厂验证的“精装版 OpenJDK”,为什么要选择Oracle jdk?
原创
博文更新于 2025.12.12 ·
118 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring-AI Tool Calling 过程中字符串与对象间的转换

在 Spring AI 的 Tool Calling 过程中,字符串与对象之间的转换主要发生在数据进入 Java 方法之前(反序列化/入参转换)和数据返回给 LLM 之前(序列化/结果转换)两个阶段另外就是给LLM提供所能使用工具转换为 LLM 能识别的 `ToolDefinition` 对象
原创
博文更新于 2025.12.08 ·
768 阅读 ·
17 点赞 ·
0 评论 ·
11 收藏

Spring-AI ETL Pipeline讲解

Spring AI 的 ETL(Extract, Transform, Load)框架是构建 RAG(检索增强生成)应用的核心组件,帮助你将原始数据(如 PDF、TXT、HTML 等)处理成 AI 模型可以理解的向量格式.提取、转换和加载(ETL)框架在检索增强生成(RAG)中充当数据处理的骨干.ETL管道编排从原始数据源到结构化向量存储的流,确保数据以最佳格式供AI模型检索。
原创
博文更新于 2025.12.08 ·
881 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

Spring-AI 利用KeywordMetadataEnricher & SummaryMetadataEnricher 构建文本智能元数据

在构建基于Spring AI的RAG(检索增强生成)应用时,数据的质量直接决定了回答的智商。RAG时,不仅需要原始文本,还需要文本的上下文摘要或核心关键词来辅助检索和生成。Spring AI提供的ETL Pipeline模块中,KeywordMetadataEnricher和SummaryMetadataEnricher正是为此而生。它们利用大模型的能力,生成文件的核心关键词及摘要信息。
原创
博文更新于 2025.12.07 ·
380 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

Spring-AI 利用Recursive Advisors如何构建可观察的循环处理链?

在构建AI应用时,常常需要让模型反复执行某些操作,比如以下操作:循环调用工具直到没有更多工具需要调用验证结构化输出并在验证失败时重试传统的做法是将这些逻辑写在模型内部,但这会让调试和监控变得困难。Spring AI的Recursive Advisor(递归Advisors)正是为了解决这个问题而设计的——它将这些循环逻辑移到了可观察、可拦截的Advisor链中,让AI应用的开发和调试更加透明和可控。
原创
博文更新于 2025.12.07 ·
716 阅读 ·
17 点赞 ·
0 评论 ·
18 收藏

Spring-AI Advisors 体系框架与实战

在构建AI应用时,常常需要在模型调用前后执行一些`通用逻辑`,例如:记录日志、管理对话上下文、进行安全审查、或者注入额外的知识库信息。如果把这些逻辑都写在业务代码里,不仅会造成代码混乱,也难以复用和维护。Spring AI 框架提供了一个`优雅的解决方案——Advisors`。它借鉴了 Spring 经典的 `AOP(面向切面编程)思想`,让你可以像“插件”一样,将这些`横切关注点(Cross-Cutting Concerns)`从核心业务逻辑中剥离出来,实现高度`可扩展`和`可定制`的AI应用。
原创
博文更新于 2025.12.06 ·
536 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

Spring-AI 如何使用Structured Output Converter将LLM输出转换为结构化数据

为什么需要结构化输出?Spring AI结构化输出转换器帮助将LLM输出转换为结构化格式。- 下游应用程序需要llm生成结构化输出,以便于进行解析- 将llm生成结果快速转换为数据类型,如JSON、XML或Java类,这些数据类型可以传递给其他应用程序函数和方法
原创
博文更新于 2025.12.06 ·
1042 阅读 ·
23 点赞 ·
1 评论 ·
9 收藏

Spring-AI 如何玩转ChatClient?

在构建AI应用时,单一模型往往难以满足多样化的业务需求。Spring AI的ChatClient提供了优雅的解决方案,支持在同一应用中灵活使用多个ChatModel。ChatClient提供了一个fluent API 来与AI模型进行通信。它支持同步和流式编程模型。 将深入探讨如何在Spring Boot应用中配置和使用多个ChatModel,实现模型的动态选择与组合,如何深入使用ChatClient进行AI应用开发。
原创
博文更新于 2025.12.06 ·
732 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

Spring-AI Moderation Model为何物?

Moderation Model 是一个专门用于**内容审核(Content Moderation)**的 AI 工具。它能自动分析你提供的文本,并判断其中是否包含违反其使用政策的敏感或有害内容。在当今这个用户生成内容(UGC)爆炸式增长的时代,从社交媒体评论到AI生成的回答,确保平台内容的合规与安全已成为开发者不可回避的责任。使用Moderation Model 可以方便的审核模型的输入和输出,识别有有害或敏感的内容。
原创
博文更新于 2025.12.05 ·
371 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Spring-AI Prompts详细解读

Prompt指导AI模型生成特定输出的输入。这些Prompt的设计和措辞显著影响模型的响应.投入时间和精力设计深思熟虑的Prompt可以极大地改善AI的结果.特别是随着人工智能技术的快速发展,如何最有效地利用Prompt是一个持续的挑战
原创
博文更新于 2025.12.05 ·
992 阅读 ·
28 点赞 ·
0 评论 ·
25 收藏

网络安全系列-四十一: arkime的docker-compose安装及可视化pcap文件示例

有了待分析的pcap文件,如何针对pcap文件进行可视化展示,并对pcap文件中的流进行各种查询分析,查看联通图等?本文基于arkime,来讲解如何基于docker快速搭建环境,并可视化pcap文件进行分析。
原创
博文更新于 2025.12.04 ·
2320 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring-AI如何支持多模态输入

目前多模态LLM已经出现,如OpenAI’s GPT-4o , Google’s Vertex AI Gemini 1.5, Anthropic’s Claude3 和开源的Llama3.2。这些模型能接受多种输入,包括文本、图像、音频和视频,并通过整合这些输入生成文本响应**多模态**是指模型能够**同时理解和处理**来自各种来源的信息,包括文本、图像、音频和其他数据格式本文讲解Spring-AI如何支持多模态输入
原创
博文更新于 2025.11.30 ·
315 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

网络安全相关的专业术语

网络安全相关的专业术语
原创
博文更新于 2025.10.03 ·
464 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

postgresql数据库pg_trgm & pgvector 使用教程

pg_trgm 是 PostgreSQL 的一个扩展模块,提供了基于 trigram(3-gram)相似度的**文本搜索**功能。它可以通过计算字符串之间的相似度来进行快速、模糊匹配的查询。这种功能在需要进行模糊搜索、字符串相似性比较等场景中非常有用。pgvector 是一个开源的 PostgreSQL 扩展,为PostgreSQL添加了对向量相似性搜索的支持,使得在 PostgreSQL中存储和查询向量数据变得可能
原创
博文更新于 2025.09.17 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spark NLP: 最先进的自然语言处理和LLM库

Spark NLP 是由 JohnSnowLabs 开发的一款基于 Apache Spark 的自然语言处理库。它支持分布式计算,能够高效处理大规模文本数据,适用于各种 NLP 任务。Spark NLP 提供了丰富的预训练模型,涵盖分词、词性标注、命名实体识别(NER)、文本分类、情感分析等任务,尤其在医疗和金融领域有广泛应用。
原创
博文更新于 2025.09.17 ·
664 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

clickhouse 中文数据的正则匹配

在ClickHouse中轻松实现中文数据的正则匹配,从而简化查询过程,提高数据处理效率
原创
博文更新于 2025.08.04 ·
356 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Is AI stealing your creative spark?

人工智能是否偷走了你的创意火花?
原创
博文更新于 2025.07.04 ·
267 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

ClickHouse 25.3 json列类型使用示例

JSON已经成为现代数据系统中处理半结构化和非结构化数据的通用语言。无论是在日志记录和可观察性场景、实时数据流、移动应用存储还是机器学习管道中,JSON的灵活结构使其成为跨分布式系统捕获和传输数据的首选格式。从clickhouse 25.3版本,在生产中已经可以使用JSON列类型
原创
博文更新于 2025.06.08 ·
1392 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

如何构建一个提供LLM运行环境的镜像

如果想在本地搭建LLM的运行环境,使用镜像是一个很好的选择本文提供基于python 3.10版本,使用poetry管理依赖,快速搭建LLM运行环境的镜像的脚本。
原创
博文更新于 2025.04.10 ·
151 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多