盖瑞理
码龄20年
求更新 关注
提问 私信
  • 博客:52,608
    社区:91
    52,699
    总访问量
  • 40
    原创
  • 201
    粉丝
  • 162
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2005-06-30

个人简介:追寻科技的技术猿人,产品负责人,数字化咨询师!

博客简介:

盖瑞理的智汇说

博客描述:
混迹在药圈的猿人
查看详细资料
个人成就
  • 获得510次点赞
  • 内容获得13次评论
  • 获得505次收藏
  • 代码片获得357次分享
  • 博客总排名68,105名
  • 原力等级
    原力等级
    3
    原力分
    423
    本月获得
    0
创作历程
  • 27篇
    2025年
  • 8篇
    2024年
  • 5篇
    2023年
成就勋章
TA的专栏
  • AI框架
    2篇
  • RAG
    10篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

用 Python 一步步实现你的第一个 DeepSeek API 项目

因为这是我们的第一个 Deepseek AI API 项目,项目名称中的“hello”代表无处不在的“Hello World”!该密钥的附加文件中的 API 密钥,而不是直接将整个 API 密钥粘贴到 Python 程序中。指令在请求主体中添加一个名为“message”的字段,其值为一个字符串,稍后将在该字段中指定 LLM 的用户提示。假设您使用的是 VS Code(如果使用其他 IDE,则可能需要采取稍微不同的操作),让我们在左侧的文件目录中。或者,如果您想将 API 密钥存储在单独的文件中,请。
原创
博文更新于 2025.07.16 ·
818 阅读 ·
25 点赞 ·
0 评论 ·
15 收藏

本地 LLM API Python 项目分步指南

假设您正在使用 VS Code(如果使用其他 IDE,则可能需要采取稍微不同的操作),请在文件目录中创建一个名为“local-llm-api”或类似的新项目文件夹。使用本地 LLM 时,建议设置虚拟环境,因为它可以隔离依赖项,防止库版本之间的冲突,并保持整体开发环境整洁。请注意,首次下载时,需要一些时间才能完全下载,这主要取决于您的网络连接带宽。完全拉取后,对话助手将自动在终端中启动,您可以在其中开始交互。不过请注意,我们将采用不同的方法,并展示构建基于 Python 的本地 LLM API 的基本步骤。
原创
博文更新于 2025.07.15 ·
880 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

2025 年机器学习工作流程的 7 个 AI 代理框架

这种多样性并非缺陷,而是一种特性,它能让您根据团队的实际需求匹配工具,而不是强制您的工作流程采用一刀切的解决方案。本文探讨的框架提供了实现这一目标的不同途径,从使自动化民主化的可视化工作流构建器,到支持尖端实验的复杂研究平台。从小处着手,尝试一些有针对性的用例,并让您的经验指导您的代理驱动工作流程的演进。它们能够处理传统自动化难以应对的机器学习工作流程中动态且决策繁重的部分,从而将您的被动操作转变为主动的智能系统。对于机器学习团队而言,这可以实现复杂的实验设计,让不同的代理处理机器学习流程的不同方面。
原创
博文更新于 2025.07.07 ·
1119 阅读 ·
11 点赞 ·
1 评论 ·
19 收藏

Gemini CLI初体验

gemini CLI初体验。用户可前往GitHub下载体验:https://github.com/google-gemini/gemini-cli。该工具简化了模型使用流程,让开发者能快速上手测试Gemini的强大性能。
原创
博文更新于 2025.07.03 ·
225 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

构建强大AI代理的最佳开源工具

你无需采用 GitHub 上所有新的代理框架。只需专注于少数几个运行良好、集成清晰且能够满足你特定目标的框架即可。AI 代理开发的成功在于清晰度,而非复杂性。不妨将这份技术栈作为你的速查表。混合、搭配,构建出如今切实可行的方案——并非理论上,而是在实际生产中。
原创
博文更新于 2025.05.14 ·
899 阅读 ·
27 点赞 ·
0 评论 ·
21 收藏

MCP、ACP 和 A2A傻傻分不清楚

如何把实时数据或外部资源(比如文件、数据库、API 结果)安全、结构化地送进大模型的"脑子"里。ACP 是 BeeAI 和 IBM 提出的协议,用于在本地或边缘环境中让多个 AI 代理相互通信和协作。它不依赖云,而是设计为本地优先、低延迟。由 Google 提出,A2A 是一种 Web 原生的开放协议,用来让不同平台、不同厂商的 AI 代理跨系统协作。可以理解为“代理之间的通用语言”。MCP:连接 AI 与外部工具和数据A2A:连接 AI 与其他 AI(跨平台、跨厂商)
原创
博文更新于 2025.05.08 ·
1097 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

MCP 入门指南

模型上下文协议 (MCP)是一种新的开放协议,它标准化了应用程序向 LLM 提供上下文和工具的方式。可以将其视为 AI 的通用连接器。MCP 作为 Cursor 的插件系统,允许您通过将其连接到各种数据源和工具来扩展 Agent 的功能。MCP 帮助您在 LLM 之上构建代理和复杂的工作流程。例如,Obsidian 的 MCP 服务器可帮助 AI 助手搜索和阅读 Obsidian 库中的笔记。您的 AI 代理现在可以:→ 通过 Gmail 发送电子邮件→ 在 Linear 中创建任务。
原创
博文更新于 2025.05.07 ·
929 阅读 ·
17 点赞 ·
0 评论 ·
14 收藏

构建 RAG 系统的高级技术

查询扩展和重构混合检索:密集和稀疏方法带重新排序的多阶段检索。
原创
博文更新于 2025.05.06 ·
614 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

AI Agent开源技术栈

如果您是从头开始构建,请从这里开始。这些工具可以帮助您构建Agent的逻辑——做什么、何时做以及如何处理工具。您可以将其视为将原始语言模型转化为更自主的模型的核心大脑。一旦你的Agent能够规划,它就需要采取行动。此类别包含的工具可让你的Agent点击按钮、输入字段、抓取数据,并像人类一样控制应用或网站。如果您的Agent需要说话或聆听,这些工具可以处理音频方面的问题——将语音转换为文本,然后再转换为文本。非常适合免提用例或语音优先的座席。有些工具甚至足以胜任实时对话。
原创
博文更新于 2025.04.29 ·
811 阅读 ·
26 点赞 ·
0 评论 ·
28 收藏

RAG 第九部分:针对 RAG 微调 LLM

文章中,我们重点介绍了与大型语言模型 (LLM) 集成的检索器组件,该组件用于检索有意义且真实的上下文知识,从而提升 LLM 输入的质量,并最终提升其生成的输出响应。与传统的微调不同,它仍然可能使用相对较大的数据集,并且通常在将 LLM 与 RAG 系统的其余部分集成之前完成,之后,将针对较小的数据集进行更有针对性、特定任务的微调。虽然在某些应用场景中,检索器提取相关的、最新的信息来构建准确的上下文的工作已经足够,不需要定期进行 LLM 再训练,但在更具体的情况下,这还不够。领域自适应预训练(DAP)
原创
博文更新于 2025.04.29 ·
921 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

5 个开源 MCP 服务器

MCP 代表模型上下文协议。这是像 Claude 这样的 AI 与自身之外的东西(例如网站或代码笔记本)进行交流的一种方式。没有它,你的 AI 就只能靠猜测。有了它,就像说:“嘿,兄弟,帮我把 GitHub 的内容抓过来”。
原创
博文更新于 2025.04.29 ·
1039 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

第八部分:缓解 RAG 中的幻觉

这些策略可能有助于提高检索到的信息和上下文的相关性,从而使最终传递给生成器的提示能够提供坚实的上下文基础。如果检索到的文档包含错误、不精确的条目、过时的信息或偏见,生成器可能会给出误导性或不正确的响应。正如本系列的开篇所讨论的,RAG 系统相较于传统语言模型的主要优势之一是能够通过检索和整合事实准确的信息来减少幻觉,但幻觉仍然可能由于多种原因而产生。在我们理解 RAG 文章系列的新一期中,我们将探讨幻觉问题,与独立语言模型相比,它们在 RAG 系统中的表现如何,最重要的是,如何解决这个具有挑战性的问题。
原创
博文更新于 2025.04.26 ·
526 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

理解RAG第六部分:有效的检索优化

每种策略都针对检索过程的不同方面,以确保生成更准确和相关的响应,并且它们都有助于缩小检索数据,以确定最相关和高质量的上下文片段,从而提高准确性和效率,尤其是在长上下文或专业RAG应用中。语义哈希专注于提高检索效率,通过将文档编码为哈希码(通常是紧凑的二进制向量),从而实现更快的基于相似度的检索。带有反馈循环的主动学习是一种交互式方法,它结合用户反馈,不断调整和改进检索结果,从而不断提升模型的检索准确率。当这种混合搜索机制的目标是根据相关性优化检索到的文档的排名时,我们会应用。1. 针对具体案例的优化。
原创
博文更新于 2025.04.24 ·
642 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

第七部分:向量数据库和索引策略

简单来说,向量数据库是一种专门化的数据库,旨在优化存储和检索以高维向量形式表示的文本。为什么这些数据库对RAG至关重要?因为向量表示能够在大规模文档库中进行高效的基于相似性的搜索,根据用户查询快速检索相关信息。在向量数据库中,语义相似的文档具有更接近的向量表示。例如,与两个餐厅评论相关的向量会比和关于古典音乐的新闻文章相关的向量更加相似。同样,通过点积和余弦相似度等向量操作,可以高效地检索到包含与用户查询在语义上相关的文本的文档。理解向量数据库与传统数据库之间的区别非常重要。
原创
博文更新于 2025.04.24 ·
731 阅读 ·
22 点赞 ·
0 评论 ·
20 收藏

了解 RAG 第三部分:混合检索和重新排序

融合检索方法涉及在 RAG 系统的检索阶段融合或聚合多个信息流。回想一下,在检索阶段,检索器(信息检索引擎)获取 LLM 的原始用户查询,将其编码为矢量数值表示,并使用它在庞大的知识库中搜索与查询高度匹配的文档。之后,通过添加从检索到的文档中产生的额外上下文信息来增强原始查询,最后将增强的输入发送给 LLM。通过在检索阶段应用融合方案,在原始查询之上添加的上下文可以变得更加连贯和上下文相关,从而进一步改善 LLM 生成的最终响应。
原创
博文更新于 2025.04.15 ·
528 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

理解RAG第五部分:管理上下文长度

上下文摘要是一种更高级的方法,用于管理RAG系统中的上下文长度,其中我们在构建最终上下文的过程中应用文本摘要技术。一种可能的方法是使用一个额外的语言模型——通常较小且针对摘要任务进行训练——来总结检索到的文档的大块内容。这种摘要任务可以是提取式或抽象式,前者识别并提取相关文本片段,后者从头开始生成一个摘要,重新表述并压缩原始片段。或者,一些RAG解决方案使用启发式方法来评估文本片段(例如,块)的相关性,丢弃不太相关的片段。策略概括文档分块。
原创
博文更新于 2025.04.15 ·
569 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

构建你的第一个AI Agent(它实际上会提升你作为AI工程师的能力)

构建你的第一个AI代理
原创
博文更新于 2025.04.06 ·
960 阅读 ·
11 点赞 ·
0 评论 ·
12 收藏

理解 RAG 第四部分:RAGA 和其他评估框架

计算此分数的过程包括选择相关指标并计算它们,将它们标准化为在同一范围内移动(通常为 0-1),并计算指标的加权平均值。权重是根据每个用例的优先级分配的,例如,对于需要高度事实准确性的系统,您可能希望优先考虑忠实度而不是召回率。本文介绍并概述了 RAGA:这是一种流行的评估框架,用于从信息检索和文本生成的角度系统地衡量 RAG 系统性能的多个方面。它以最简单的方式成功评估了(即检索器和生成器)的性能——既可以单独评估,也可以作为单个管道联合评估。让我们来了解一下事物检索和生成方面的一些最常见的指标。
原创
博文更新于 2025.03.20 ·
1056 阅读 ·
21 点赞 ·
0 评论 ·
14 收藏

如何使用AI自动生成令人惊叹的网站设计

AI 可以帮助设计师更快、更高效地工作,但只有人类才能带来真正的创意和独特的思维。人工智能可以提高生产力,而设计师则可以专注于创造力、同理心和打造有意义的用户体验。最近领导让搞一个UI设计,我是做过开发,也做过产品,UI就是没做过,知识略懂一二,AI的到来给了我们这些略懂一二的人一些机会,尝试了一些探索供大家学习研究。“为 SaaS 产品创建一个简洁的主页,其中包含主要的功能如下。“面向科技初创公司的未来主义、简约的网站设计、深色模式、科技装饰。“SaaS 网站主页的现代渐变风格背景,平滑的色彩过渡。
原创
博文更新于 2025.03.01 ·
4540 阅读 ·
41 点赞 ·
0 评论 ·
47 收藏

了解 RAG 第二部分:经典 RAG 的工作原理

在本系列的第一篇文章中,我们介绍了检索增强生成 (RAG) ,解释了扩展传统大型语言模型 (LLM)功能的必要性。我们还简要概述了 RAG 的核心思想:从外部知识库检索上下文相关的信息,以确保 LLM 生成准确且最新的信息,而不会产生幻觉,也不需要不断地重新训练模型。本系列的第二篇文章揭秘了传统 RAG 系统运行的机制。尽管如今随着人工智能的迅猛发展,许多增强版和更复杂的 RAG 版本几乎每天都在不断涌现,但要了解最新的先进 RAG 方法,第一步是先理解经典的 RAG 工作流程。经典 RAG 工作流程。
原创
博文更新于 2025.02.23 ·
1027 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏
加载更多