ouliten
码龄4年
求更新 关注
提问 私信
  • 博客:125,396
    问答:46
    视频:1
    125,443
    总访问量
  • 137
    原创
  • 726
    粉丝
  • 86
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:吉林省
加入CSDN时间: 2021-10-10

个人简介:21届的弱鸡计科学生

博客简介:

ouliten的博客

查看详细资料
个人成就
  • 获得1,708次点赞
  • 内容获得23次评论
  • 获得1,812次收藏
  • 代码片获得733次分享
  • 博客总排名12,432名
  • 原力等级
    原力等级
    5
    原力分
    1,385
    本月获得
    55
创作历程
  • 80篇
    2025年
  • 26篇
    2024年
  • 26篇
    2023年
  • 6篇
    2022年
成就勋章

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

2025年 吉林大学 分布计算系统 期末真题

名字按结构可分为()和()名字解析方法有两种()、()中有如下共享语义:()、()、()、()发生死锁的四个充分必要条件是:()、()、()、()一个文件有n个副本,使用同步表表决发完成一次更新,共需传送()个报文由局部检查点组成的两种不一致的全局状态为()、()传统的加密方法有两种,他们是()、()在分布式系统中,两种基本的检查点算法分别是()、()
原创
博文更新于 前天 15:17 ·
139 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

C++笔记:流式异步日志库

综合我之前学过的异步日志库,流的缓冲区以及TensorRT里sample的日志设计。总结出了一套流式异步日志。
原创
博文更新于 2025.12.14 ·
316 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

《Linux C编程实战》笔记:mmap

在mmap()1. 文件映射(File-backed mapping)使用真实文件做后端存储特点:修改内存 → 写到文件文件内容被映射进内存文件大小必须足够大,否则会 SIGBUS(访问超界)2. 匿名映射(Anonymous Mapping)匿名映射没有对应的文件,内核从swap 分配私有内存页。-1, 0);没有文件后端,fd 必须为 -1内容初始全是0修改不会写回任何地方对进程来说就像是malloc()分配的一大块内存匿名映射 =malloc 的更底层版本。实际上。
原创
博文更新于 2025.12.12 ·
873 阅读 ·
21 点赞 ·
0 评论 ·
26 收藏

《Linux C编程实战》笔记:线程终止

Linux 下有两种方式可以使线程终止,一种是通过return从线程函数返回,第二种是通过调用pthread_exit()使线程退出是一个线程库中的函数,用于终止调用线程。调用将会终止当前线程,并将retval的值传递给等待该线程的任何调用的线程。如果线程没有被任何其他线程等待,它的资源将会在终止时被释放。有两种特殊情况要注意:一种情况是, 在主线程中,如果从main函数返回或是调用了exit函数退出主线程,则整个进程将终止,此时进程中所有线程也将终止,因此在主线程中不能过早地从main函数返回。
原创
博文更新于 2025.12.12 ·
812 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

《Linux C编程实战》笔记:socketpair

用于创建。这两个 socket 是,也就是说:A 给 B 写数据B 给 A 写数据两个方向都可行。就像一个,但至于为什么更强大,其实也很好理解,套接字毕竟是和网络相关的,所以网络那一块的高级特性,它也能用。
原创
博文更新于 2025.12.07 ·
583 阅读 ·
11 点赞 ·
0 评论 ·
16 收藏

TensorRT笔记(5):研究timingCache

在里出现了大量的timingCache,但是当时没有取研究这是干啥的,本文就来解析一下。样例都基于上面的文章。
原创
博文更新于 2025.12.02 ·
1206 阅读 ·
8 点赞 ·
0 评论 ·
23 收藏

C++笔记:std::priority_queue

int id;int cost;// 小根堆。
原创
博文更新于 2025.11.29 ·
399 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

TensorRT笔记(4):自定义CharRNN推理类

float*
原创
博文更新于 2025.11.27 ·
620 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

gprc静态库链接顺序究竟要怎样

由于我通过grpc源码编译生成的库没装到系统目录,cmake的find_package不太好使,虽然grpc可以找到包,但是grpc依赖的protobuf找不到,所以只能手动链接静态库了。被grpc的静态库链接恶心了几个小时,经过我的精心调试,终于把依赖搞对了,特此记录。这些absl的包必须有依赖顺序,免得以后调顺序,直接抄我的顺序即可。下面是cmake+Linux,注意不要搞错。
原创
博文更新于 2025.11.25 ·
154 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

C++笔记:std::string_view

是 C++17 引入的。它不拥有字符串,只是“指向一段连续字符”的二元组。避免创建临时、减少拷贝,提高性能。字面量并且。
原创
博文更新于 2025.11.24 ·
540 阅读 ·
6 点赞 ·
1 评论 ·
13 收藏

C++笔记:std::stringbuf

public://拷贝应该是禁止的,我这里偷懒没写了~LogBuffer()override {//重要,这个得重写//防止有残留数据留在缓冲区//重要,flush,endl会调用syncreturn 0;private://清空//会把hello输出//逻辑是这样的,myostream的<<只会把数据输入到LogBuffer的缓冲区里面,并不会输出到屏幕//<<std::endl,LogBuffer内部调用sync,std::cout这时候才把缓冲区的内容进行输出。
原创
博文更新于 2025.11.23 ·
938 阅读 ·
29 点赞 ·
0 评论 ·
11 收藏

TensorRT笔记(3):解析样例中BufferManager类的设计

在里,我只是提了一下BufferManager,因为整体比较多,专门放在本文来讲。可以具体对比一下,这篇文章的推理过程,涉及了GPU内存的申请释放,为了不显示管理GPU内存,所以官方封装了BufferManager类,避免混乱。
原创
博文更新于 2025.11.16 ·
583 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

TensorRT笔记(2):解析样例中Logger日志类的设计

在我把Logger这个类给贴出来了,但是关键的实现机制并没有详细讲解这个Logger类继承了nvinfer1::ILogger,最关键的重写log方法实现如下很明显这个log方法委托给了LogStreamConsumer这个类取实现。而且LogStreamConsumer这个类样子上就很明显像std::ostream的使用方法。下面就从头开始分析这个类的实现。
原创
博文更新于 2025.11.11 ·
709 阅读 ·
27 点赞 ·
0 评论 ·
20 收藏

TensorRT笔记(1):自定义MNIST数据集推理类

阅读之前,可以先看,了解TensorRT最基础的执行流程。本例就是对该流程的封装。在前文已经介绍过的api,本文就不再介绍了。注意:示例代码里用到了许多common文件夹里的官方定义的类,在介绍时会一并介绍。自己如果想要运行也要注意这些头文件和cpp文件,以免编译不过。
原创
博文更新于 2025.11.08 ·
757 阅读 ·
29 点赞 ·
0 评论 ·
17 收藏

cuda编程笔记(21)-- TensorRT

TensorRT 是什么NVIDIA 的深度学习推理引擎(Inference SDK),专门优化在 GPU(尤其是 Tensor Core GPU)上运行的神经网络推理。特点是:高吞吐量(throughput)低延迟(latency)支持 FP32 / FP16 / INT8 / (部分 GPU 上支持 FP8)你可以把它理解为 模型推理加速器,类似 PyTorch → ONNX → TensorRT 的 pipeline。TensorRT 的基本流程通常使用 TensorRT 有三个步骤:模型导入从 ON
原创
博文更新于 2025.11.08 ·
976 阅读 ·
31 点赞 ·
0 评论 ·
21 收藏

《C++ 并发编程实战》一些示例代码段

在线程中可能访问局部变量的引用或者地址,但是在执行过程中该变量会被释放,导致线程运行出错,比如下面的例子因为线程分离了,local_val就有可能被回收。直接的修改方式就是把detach改为join,这样只有等到线程使用完, local_val才会被回收。对于一个线程如果不将它分离(detach),那么就要记得对它调用join。问题是并不是每次都会记得,甚至记得了也不一定能调用成功,比如下面的示例:如果要确保会调用join,需要捕获异常 这样非常麻烦,因为需要对所有可能出现异常的地方都使用
原创
博文更新于 2025.11.02 ·
992 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

C++笔记:std::variant

✅事件分发系统(代替 switch case)解析器或状态机(多分支结果)GUI / 网络消息(多种 payload)异步任务结果替代多态的轻量数据结构🚫类型数量极多(上百种);类型不固定(动态插件系统);存储不确定类型(那用std::any更好)。
原创
博文更新于 2025.11.01 ·
822 阅读 ·
12 点赞 ·
0 评论 ·
30 收藏

cuda编程笔记(35)-- Cooperative Groups

这是 CUDA 的,属于,它在普通的 block / warp 层次之上引入了。
原创
博文更新于 2025.10.30 ·
643 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

cuda编程笔记(34)-- 内存访问控制与缓存提示

缓存层作用范围容量一致性可写典型用途每个 SM 独立小(128KB~192KB)不全局一致可写局部数据缓存每个 SM 独立小(48KB~128KB)无需一致性只读常量、查表L2 Cache全 SM 共享大(几 MB)全局一致可写跨 SM 通信、共享数据。
原创
博文更新于 2025.10.27 ·
977 阅读 ·
19 点赞 ·
0 评论 ·
28 收藏

cuda编程笔记(33)--Thrust库的使用

Thrust 所有容器都支持通过模板参数指定 allocator。可以自定义一个分配器,让它使用和。// ---------------- 自定义 pinned allocator ----------------// 分配:用 cudaHostAlloc 分配固定页内存if (err!return ptr;// 释放:用 cudaFreeHost// 必须定义比较操作符(allocator 要求)
原创
博文更新于 2025.10.26 ·
942 阅读 ·
15 点赞 ·
1 评论 ·
23 收藏
加载更多