musicml
码龄19年
求更新 关注
提问 私信
  • 博客:647,311
    647,311
    总访问量
  • 574
    原创
  • 3,448
    排名
  • 2,732
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2006-07-21
博客简介:

musicml的博客

查看详细资料
个人成就
  • 获得6,553次点赞
  • 内容获得48次评论
  • 获得6,790次收藏
  • 代码片获得1,206次分享
创作历程
  • 238篇
    2025年
  • 222篇
    2024年
  • 52篇
    2023年
  • 1篇
    2022年
  • 3篇
    2021年
  • 29篇
    2020年
  • 23篇
    2019年
  • 1篇
    2018年
  • 4篇
    2017年
  • 9篇
    2016年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI 智能体企业级自动化评估实用指南

这种方法能以传统人工审核成本的一小部分实现 24/7 全天候质量保障,可规模化处理定性评估任务,原本需要大量人工标注员完成的工作,如今该方法每小时可评估数千个输出,而非几十个。模拟测试则更进一步:它并非针对孤立案例,而是创建一个模拟真实运营的安全环境,例如:数千条合成客户聊天记录、模拟订单流程,或调用内部 API 的虚拟智能体。:指未经定制的基础模型(例如:Qwen 3、GPT-5、Claude 或 Gemini 3 Pro 等),这类模型经过海量数据集预训练,具备通用能力,但未针对特定任务优化。
原创
博文更新于 13 小时前 ·
651 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

GPT-5 的 Memory 系统技术架构,比想象中简单太多了!

在于:并非所有内容都需要以 “传统记忆” 的形式存在,会话元数据实时适配环境,明确事实跨会话持久化,对话摘要提供无细节负担的连贯性,当前会话保障即时推理流畅。对开发者而言,这是一个务实的工程启示:有时更简洁、经过精心筛选的方案,反而优于复杂的检索系统,尤其是在你能掌控整个技术链路时。通过结合临时会话元数据、明确长期事实、轻量对话摘要和当前会话滑动窗口,它实现了一项了不起的成果:既具备 “懂你” 的个性化体验,又摆脱了传统 RAG 系统的计算开销。这些记忆会作为独立模块,注入未来的每一次提示词中。
原创
博文更新于 13 小时前 ·
463 阅读 ·
15 点赞 ·
0 评论 ·
6 收藏

Human In the Loop 新范式:基于 MCP 协议的 Agent 交互设计与实现

但在企业级应用中,Agent 多部署于远端服务端,大模型会将自身视为与人类平等的个体,设计提示词时应避免使用 "工具""LLM""大模型" 等术语,采用拟人化表述,减少 Agent 的理解偏差,提升交互自然度。未来,我们将进一步优化决策 Agent 的智能度,提升多轮交互的上下文理解能力,探索基于用户画像的个性化问询策略,让人机回路更高效、更贴合人类使用习惯。用户明确拒绝答复时,终端返回预设文本(比如:"我也不是很清楚这里的细节,你可以根据你的想法做发挥"),Agent 通过提示词调整行为,避免重复问询。
原创
博文更新于 前天 09:00 ·
478 阅读 ·
16 点赞 ·
0 评论 ·
26 收藏

Claude Skills 完全指南:让 AI 精准适配你的工作流程

如果你是 AI 研究撰稿人,经常写技术文章,就可以在 SKILL.md 里写明要求:“用 EEAT 格式写作,模仿沃尔特・艾萨克森的语气,每个章节先给出结论,再详细展开”。在 Claude 设置里,你能看到已经激活的各种 Skill,比如:algorithmic-art(算法艺术)、brand-guidelines(品牌规范)、internal-comms(内部沟通)等,随时能用。:如果你的需求是 “帮我写新仪表盘功能的 PRD”,而你刚好有对应的 PRD Skill,Claude 会自动激活它。
原创
博文更新于 2025.12.17 ·
842 阅读 ·
12 点赞 ·
0 评论 ·
19 收藏

到底选 Skills 还是 Subagents?一篇说透

这个 “分身” 会在独立的上下文环境中执行,有自己的工具和权限,执行过程中的思考、临时状态都不会占用主会话空间,做完只把最终结果反馈回来。但其实你真正要解决的核心问题,从来不是 “选哪个名词”,而是 “在我的场景里,谁来执行任务、执行到什么程度、状态怎么保留,才最高效?先抛开复杂概念,用做饭这件事打个比方。:在独立的上下文里执行,像开了一个 “子工程”,和主会话互不干扰,相当于 “外包给专门的分身完成”。的内容本质是相通的,都是 “工作说明书”,会明确任务目标、输入输出要求、执行步骤、注意事项。
原创
博文更新于 2025.12.16 ·
907 阅读 ·
20 点赞 ·
0 评论 ·
13 收藏

构建 AI 智能体一年后的 8 大经验教训

而如今,PostHog AI 可通过数十种工具访问你的数据与配置,像不知疲倦的产品分析师般循环工作,直至完成你交付的任务:无论是多步骤产品使用分析、SQL 查询编写、新功能标志与实验配置,还是深挖高影响度错误等,所有操作均在 PostHog 生态内完成。最终,就像所有伟大的创作者都会借鉴他人经验一样,我们从最优秀的实践中汲取灵感 ,借鉴 Claude Code 的设计,实现了。它并非完美,但能应对产品数据的复杂现实:所有数据相互关联,事件构成会话,会话衍生错误,点击行为跨越多条路径,就像一碗缠绕的面条。
原创
博文更新于 2025.12.16 ·
598 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

我逆向工程了 ChatGPT 的记忆系统,发现了这些核心机制!!

核心洞察在于:并非所有内容都需要以 “传统记忆” 的形式存在,会话元数据实时适配环境,明确事实跨会话持久化,对话摘要提供无细节负担的连贯性,当前会话保障即时推理流畅。通过结合临时会话元数据、明确长期事实、轻量对话摘要和当前会话滑动窗口,它实现了一项了不起的成果:既具备 “懂你” 的个性化体验,又摆脱了传统 RAG 系统的计算开销。对开发者而言,这是一个务实的工程启示:有时更简洁、经过精心筛选的方案,反而优于复杂的检索系统,尤其是在你能掌控整个技术链路时。这些记忆会作为独立模块,注入未来的每一次提示词中。
原创
博文更新于 2025.12.16 ·
647 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

Skills 与 Prompts、Projects、MCP 和 Subagents 的区别

如果多个智能体或对话需要相同的专业知识,例如:安全审查流程或数据分析方法,建议创建技能,而非将知识内置到单个子智能体中。对于发现的每个问题,请提供:严重级别(致命 / 高 / 中 / 低)、在代码中的位置(行号或函数名)、漏洞风险说明及可能的利用方式、具体修复建议(尽可能附带代码示例)、预防类似问题的最佳实践指南。常见漏洞,包括:注入漏洞(SQL 注入、命令注入、跨站脚本(XSS)等)、身份认证与授权问题、敏感数据泄露、安全配置错误、访问控制失效、加密机制故障、输入验证问题、错误处理与日志记录问题。
原创
博文更新于 2025.12.16 ·
550 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

借助 MCP 实现代码执行代替工具调用,构建更高效智能体的新范式

传统方式中,智能体与工具、数据的对接需要为每一组配对开发定制化集成方案,这会造成系统碎片化和重复开发,难以构建真正可扩展的连接系统。运行智能体生成的代码需要安全的执行环境,包括适当的沙箱隔离、资源限制和监控机制。智能体可通过编写代码与 MCP 服务器交互,这种方式能同时解决上述两个问题:智能体仅加载所需工具,并在执行环境中处理数据后,再将结果返回给模型。工具中加入细节级别参数,允许智能体选择所需的信息详细程度(例如:仅名称、名称和描述、或包含模式的完整定义),也有助于智能体节省上下文并高效查找工具。
原创
博文更新于 2025.12.12 ·
777 阅读 ·
10 点赞 ·
0 评论 ·
25 收藏

自进化 AgentScope Java 1.0 正式发布

针对 Java 生态下 Agent 开发的核心痛点:架构僵化、安全风险高、集成难度大、优化闭环缺失,框架以 ReAct 范式为基础,构建了 “自主规划 + 可控执行 + 数据驱动进化” 的技术架构体系,既满足企业级应用的稳定性要求,又能依托。内置 GUI、文件系统、移动端等开箱即用的沙箱环境,实现工具执行的高度隔离,防止敏感资源访问与不可控行为,全面支撑浏览器自动化、训练评测等复杂场景的安全需求。” 全生命周期解决方案为核心,打破智能体从实验室原型到业务落地的技术壁垒,凭借自进化能力与企业级稳定性,
原创
博文更新于 2025.12.11 ·
767 阅读 ·
9 点赞 ·
0 评论 ·
20 收藏

Agent 业务落地的 “减法艺术”:从上下文工程到最小可行架构

Agent 业务落地的核心逻辑,是通过 “减法” 实现 “Less, but better”,剥离冗余信息、精简工具数量、简化执行流程,让 Agent 聚焦核心任务目标。Agent 的本质是 “基于上下文的智能决策系统”,而上下文工程的核心矛盾在于 “可用上下文” 与 “必要上下文” 的不匹配。,通过精准筛选信息、动态匹配工具、简化执行流程,保留完成当前任务 “必要且充分” 的资源,同时借助上下文工程与外部存储机制,解决 Token 冗余、信息过载等核心痛点。
原创
博文更新于 2025.12.10 ·
620 阅读 ·
12 点赞 ·
0 评论 ·
5 收藏

企业级 AI 智能体落地,90%都是上下文工程,只有10%才是真正的 AI

CPU/GPU 提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI 智能体协议层、AI 智能体编排层、AI 智能体认证层、AI 智能体可观测层、工具层、认证层、记忆层、前端层。CPU/GPU 提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI 智能体协议层、AI 智能体编排层、AI 智能体认证层、AI 智能体可观测层、工具层、认证层、记忆层、前端层。如果你对构建企业级 AI 大模型应用新架构设计和落地实践感兴趣。
原创
博文更新于 2025.12.09 ·
827 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

AI 智能体长期记忆系统架构设计与落地实践

当对话内容超出了上下文长度时,LLM 可能会像一个“健忘”的伙伴一样,忘记用户的喜好、重复提问,甚至与之前确认的事实相冲突。它把记忆信息保存成知识图谱的样子,图谱里的点代表不同的实体(比如:人、地方),点与点之间的连线代表它们之间的关系(比如“住在”、“喜欢”)。通过在长对话评测基准 LOCOMO 上,对 Mem0 和 Mem0-g 进行了全面的比较测试,对比的对象包括六种不同类型的基线方法,比如:现有的记忆增强系统、不同设置的 RAG、处理整个对话历史的全上下文方法、开源的记忆解决方案以及商业平台。
原创
博文更新于 2025.12.08 ·
740 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

通过领域驱动设计对齐业务与技术架构

领域驱动设计(DDD)由埃里克・埃文斯(Eric Evans)首创,经沃恩・弗农(Vaughn Vernon)进一步阐述,是跨越这一鸿沟的战略桥梁。战术设计(Tactical Design):微观视角,提供模型的构建块,例如实体(Entities)、值对象(Value Objects)、聚合(Aggregates,一致性边界)和领域事件(Domain Events)。例如,在在线学习平台中,“课程管理”(核心子领域)和 “推荐引擎”(支撑子领域)是两个独立的子领域,各自拥有独特流程。
原创
博文更新于 2025.12.07 ·
768 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

深度智能体2.0评估工程:LangChain 的实践经验

如果使用 LangGraph,其流式传输功能允许你在单次工具调用后中断智能体,检查输出结果,无需完整运行智能体序列,即可及早发现问题。用户要求智能体 “记住永远不要在早上 9 点前安排会议”,我们需要验证智能体是否会在文件系统中更新自身记忆,记录该信息。你需要测试的不仅是最终消息,每个数据点的 “成功标准” 可能更具针对性,还可能涉及对智能体执行轨迹和状态的特定断言。与较简单的 LLM 评估(环境仅限于少数无状态工具)不同,深度智能体需要为每次评估运行提供全新、干净的环境,以确保结果可复现。
原创
博文更新于 2025.12.06 ·
836 阅读 ·
17 点赞 ·
0 评论 ·
30 收藏

企业级 AI 智能体规模化落地:MCP+GraphRAG+AgentDevOps+RaaS 的工程化实践

自 Claude 3.5 Sonnet 率先支持 MCP 以来,Block、Apollo 等企业快速落地实践,微软、谷歌、亚马逊云科技、OpenAI 及国内 BAT 等巨头也纷纷布局,GitHub、Hugging Face 社区涌现数千个 MCP Server,覆盖数据库、云服务等多元场景,MCP 注册表中的服务器数量已接近 2000 个,生态扩张速度显著。当 AI Agent 具备岗位专家能力,实现模板化复用且价值与财务口径精准对齐时,规模化部署的条件将完全成熟,人机共存的全新生态或将全面到来。
原创
博文更新于 2025.12.04 ·
989 阅读 ·
7 点赞 ·
0 评论 ·
23 收藏

RAG, Agentic RAG, and AI Memory 一文看懂 AI 技术演进

可以说,记忆是连接 “死板模型” 和 “灵活 AI 系统” 的桥梁。但这也不是没挑战:比如记忆会 “出错污染”(记混信息)、不知道该 “忘记” 没用的内容、还要区分不同类型的记忆(比如做事步骤、过往经历、专业知识)。关键动作:快速迭代提示词版本、用 “思维链”(一步步推理)、加 “少样本示例”(给几个正确案例),把提示词设计当成 “可重复的工程活”,而不是瞎试。关键动作:用 LoRA/QLoRA 等轻量方法(省钱省算力)、整理高质量数据(去重、格式统一)、防止 “学太死”(过拟合)或 “学不会”(泛化差)
原创
博文更新于 2025.12.03 ·
980 阅读 ·
8 点赞 ·
0 评论 ·
17 收藏

微服务之父深度访谈:AI 是软件工程40多年来最大的变局

Martin Fowler(马丁福勒) 是软件开发领域的标杆性人物,他是微服务之父,也是《敏捷宣言》起草者之一、《重构》《企业应用架构模式》等经典著作作者,作为 Thoughtworks 首席科学家,他对技术趋势的洞察始终深刻且具前瞻性。他分享了一个真实案例:同事用 LLM 生成 SVG 图表,表面可用,但当他试图微调标签位置时,发现生成的代码混乱复杂,远超人工手写的十几行代码,最终导致维护困境。Fowler 强调,:面对 AI 给出的解决方案,追问其逻辑和来源,利用 AI 辅助理解,而非单纯获取答案。
原创
博文更新于 2025.12.02 ·
969 阅读 ·
28 点赞 ·
0 评论 ·
12 收藏

所谓 “LLM 智能”,究竟源于模型革新,还是工程拼凑?

对于许多尚未达到 AI 编程工具水平的领域来说,确实还有进步空间,毕竟 AI 编程工具是开发者为自己打造的,他们懂问题所在,也知道如何解决。这完全超出了预期:从 GPT-3 笨拙的算术能力,到 GPT-4 连贯的代码生成,此前的进步似乎势不可挡,甚至催生出了一整个押注 “持续进步” 的行业。OpenAI 曾承诺 “让每个人口袋里都有博士级别的智能”,但最终交付的产品,在所有能力核心的代码生成上,几乎毫无进展。尽管投入了数十亿美元的计算资源,汇聚了全球最顶尖的研究人员,但模型的质的提升却越来越少。
原创
博文更新于 2025.12.01 ·
444 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

Deep Agents:AI 智能体 2.0 架构全解析

但面对 “分析 10 个竞品定价、生成对比表并写战略建议” 这种需要 50 步、耗时 3 天的复杂任务,就会暴露明显缺陷,要么记不住初始目标,要么上下文溢出导致 “失忆”,甚至陷入无限循环,最终输出错误信息(也就是 AI 领域常说的 “幻觉”)。复杂任务需要 “分工”,而智能体 1.0 试图 “一个人包打天下”,既当 “研究员” 又当 “撰稿人”,效率低且易出错。相当于 “专项专家”,每个子智能体只做一类任务(如 “研究员” 负责搜索分析,“编码员” 负责写代码,“撰稿人” 负责文字输出);
原创
博文更新于 2025.12.01 ·
1011 阅读 ·
27 点赞 ·
0 评论 ·
21 收藏
加载更多