苗忆北
码龄6年
求更新 关注
提问 私信
  • 博客:3,805
    社区:1
    3,806
    总访问量
  • 4
    原创
  • 68
    粉丝
  • 77
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2020-04-23

个人简介:机器视觉 图像算法 结构光三维重建

博客简介:

miaochengtong的博客

查看详细资料
个人成就
  • 获得53次点赞
  • 内容获得0次评论
  • 获得58次收藏
  • 博客总排名125,003名
  • 原力等级
    原力等级
    1
    原力分
    51
    本月获得
    0
创作历程
  • 4篇
    2025年
成就勋章
TA的专栏
  • 图像处理
    3篇
  • 环境搭建
    1篇

TA关注的专栏 6

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

C++ OpenCVCuda 图像处理-高斯滤波

高斯分布(正态分布)的概率密度集中在均值附近,其能量(即对滤波的贡献)主要分布在 [−3σ,+3σ] 范围内(约占总能量的 99.7%)。)需要至少覆盖 [−3σ,+3σ] 范围,才能避免因核太小而 “截断” 高斯分布的有效部分(否则会导致滤波效果偏离理想的高斯模糊)。让小核(如 3×3 核)的滤波效果更符合实际需求,同时保证不同尺寸核的效果过渡自然。越大(符合高斯核的特性:核越大,模糊程度越高,对应标准差越大,核大小需设置为奇数)与核的最小边长相关,核越大,默认。,本质是让:核的半宽≈3σ。
原创
博文更新于 2025.08.08 ·
306 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

C++ OpenCVCuda 图像处理-ROI

本文对比了10种在VS2019+OpenCV4.10.0+CUDA12.8环境下对图像进行ROI截取的方法,测试结果表明,对于轻量级ROI操作,传统CPU方法(memcpy、clone、copyTo)因避免线程管理和设备通信开销而更具优势
原创
博文更新于 2025.08.01 ·
849 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

C++ OpenCVCuda 图像处理-灰度化

本文介绍了两种基于CUDA的图像灰度化方法:OpenCV内置CUDA函数和自定义CUDA核函数。通过VS2019环境测试,发现首次调用CUDA函数会有初始化开销(10-30ms),后续调用则大幅降低(约1ms)。自定义CUDA核函数通过16x16线程块优化,在特定场景下比OpenCV实现更高效(测试显示0.5ms vs 1ms),但OpenCV方案具备更好的通用性和鲁棒性。
原创
博文更新于 2025.07.31 ·
257 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

Windows11(RTX5060显卡)+VS2019+Opencv4.10.0+CUDA12.8+Cmake3.17.0 环境编译与配置

本文详细介绍了在使用最新的Windows11和RTX5060显卡条件下如何编译并搭建Opencv(有CUDA加速版本)环境并配合VS2019进行开发测试,包括配置环境过程中遇到的一些问题
原创
博文更新于 2025.07.11 ·
2389 阅读 ·
29 点赞 ·
0 评论 ·
26 收藏