Xiaomin-Wu
码龄11年
求更新 关注
提问 私信
  • 博客:266,205
    社区:1
    问答:10,011
    276,217
    总访问量
  • 46
    原创
  • 76
    粉丝
  • 69
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2014-09-14
博客简介:

meanme的专栏

查看详细资料
个人成就
  • 获得33次点赞
  • 内容获得8次评论
  • 获得78次收藏
  • 博客总排名1,439,405名
创作历程
  • 17篇
    2016年
  • 53篇
    2015年
成就勋章
TA的专栏
  • Android 应用
    1篇
  • Java
    3篇
  • git
    4篇
  • Android底层
    3篇
  • ubuntu
    2篇
  • ML
    26篇
  • python
    2篇
  • ML比赛
    3篇
  • NLP
    10篇
  • papers
    13篇
  • 深度学习框架
    1篇
  • 搬砖
    5篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

梯度下降法综述

Gradient Descent Variants(1)Batch gradient descent: 计算整个数据集上, Cost function 对于parameters的偏导,而后更新梯度;对于convex error surfaces可以得到global minimum,而对于non-convex error surfaces能得到local minimum(2) Stochastic g
原创
博文更新于 2016.03.23 ·
4067 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

U-Net: Convolutional Networks for Biomedical Image Segmentation

1.下降部分conv+maxpool,上升部分conv_transpose+conv,浅色大箭头表示把两个feature map连起来 2.输入图片会比输出图片略大(因为没有padding和repeat) 3.支持任意大小的图片输入,采用mirror方式处理missing patch部分 4.可以给loss加权
原创
博文更新于 2016.03.20 ·
7153 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

GBDT--简单理解

梳理1.Model Ensemble 可以分为三大类:Bagging,Boosting, Stacking.2.Boosting可以说是一个思想(框架),而Adaboost等算法只是其一个子类,记得ICCV2015有一个结合CNN和Boosting的工作获得了Best Paper Award?:3.Boosting的 前向分布算法(在每一步求解弱分类器Φ(m)和其参数w(m)的时候不去修改之前已经求
原创
博文更新于 2016.03.17 ·
3326 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Learning Deconvolution Network for Semantic Segmentation

Intro:不同于FCN的Deconvolution(最后一层其实是双线性差值,weights不可学习),这篇文章中的Deconvolution layer中的params都是可以学习的: Idea:1. Unpooling:首先subpooling的时候记住max pooling layer选择的最大值的location,然后在Unpooling层还原回原location,其它像素应该是用0代替
原创
博文更新于 2016.03.16 ·
3939 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Fully Convolutional Networks for Semantic Segmentation

UC伯克利的一篇文章介绍:1.Semantic Segmentation有两个固有性质:1)semantic: global information解决目标是什么的问题2)location:local information解决目标在哪的问题2.关于本文提出的FCN:1)利用现有的Classification model进行finetuning2)通过 skip connections来combin
原创
博文更新于 2016.03.11 ·
8112 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

Conditional Random Fields as Recurrent Neural Networks

牛津,斯坦福,IDL的一篇论文介绍:1.传统的用于Object Recognition的CNN很难转换为用于segmentation的 pixel-wise predicting:1)感受野过大以及pooling操作使的feature map很coarse2)缺少smooth机制导致poor object delineation和small spurious region2.MRF(马尔科夫随机场)
原创
博文更新于 2016.03.09 ·
4609 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Deep Dream and Neural Style

Neural Style:通过优化三个loss:(1)style loss:主要是优化base image和style reference image之间的L2 距离(优化多个conv层的feature maps) (2)content loss:主要优化base image 和 combination image之间的L2距离(主要优化一层的feature maps) (3)total
原创
博文更新于 2016.03.07 ·
1355 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

DeepLearning--Part3--Chapter16:Representation Learning(1) categories:

-Chapter 16: Representation Learning什么是好的Representation?有很多种可能的答案,这也是一个在以后的研究中还需要进行探索的问题。在本书中,我们给Representation下的定义则是Representation Learning能够使加下来的Learning task变得更加的简单。In an unsupervised learning setti
翻译
博文更新于 2016.03.06 ·
1452 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

DeepLearning--Part2--Chapter6:Feedforward-Deep-Networks(1)

Part 2 : Deep Networks: Modern Practices本书的这部分内容主要介绍一些已经有实际应用的深度学习方法。深度学习拥有很长的历史,也有宏大的愿景。一些深度学习方法尚未成熟,充满野心的目标也尚未实现,这些待发展的深度学习分支将在本书的最后一部分讨论。这部分讨论那些早已在工业界落地,正在大规模使用的深度学习方法。现在的深度学习提供了的一个强有力的监督学习的框架(frame
翻译
博文更新于 2016.03.06 ·
1976 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Github部署Hexo

一:下载hexohexo需要两个依赖项:Node.jsGit安装完上面两个依赖项之后,运行以下命令进行安装(右键,点击git bash):$ npm install -g hexo-cli二:部署在本地进入本地文件夹,运行以下命令:$ hexo init $ cd $ npm install三:将hexo部署在github上:首先需要注册一个github账号,生成一个类似于xxxx
原创
博文更新于 2016.03.06 ·
851 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Window10安装theano keras cuda

一: 软件安装(安装路径均默认)首先安装pycharm再安装VS2012继续安装Git(后面需要用git指令安装theano keras)接下来安装Anaconda(需要配置环境变量,后面说)打开pycharm,使用pycharm安装pip,指定版本为1.2.1(需要配置环境变量,后面说)打开cmd,使用以下指令安装theano(兼容keras,不然无法使用relu函数):pip install
原创
博文更新于 2016.03.06 ·
3004 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Keras笔记 -- objective

Keras定义了以下几种objective fuction:(1) mean-squared-error def mean_squared_error(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1)(2) root-mean-squared-error def root_mean_s
原创
博文更新于 2016.03.06 ·
6639 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Multi-digits Recognition Using ConVNet on Mobile categories:

这是Stanford,Mobile Computer Vision课程的一个final report简介使用DeepBeliefSDK和opencv等工具,使用ConVNet模型做了一个Android APP。功能是能够从一张图中识别0-9几个数字。因为在移动设备上,设备的运算速度和memory都受到了限制,所以作者设计了一个简单的卷积网络(两层卷积两层maxpooling),并且使用了batchi
原创
博文更新于 2016.03.06 ·
866 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

kaggle-浮游生物分类比赛一等奖---译文(第三部分)

接着上一篇的内容model averaging我们将多个模型融合的结果作为最后提交的内容1)Test-time augmentation对于每一个单独的模型,我们使用不同的augmentation得到不同的预测结果,然后将这些结果融合,这对performence的提升有很大的帮助。我们将Test-time augmentation简写为TTA。开始的时候,我们使用人工创造的仿射变换(affine t
翻译
博文更新于 2016.03.06 ·
2049 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

kaggle-浮游生物分类比赛一等奖---译文(第二部分)

接着上一篇的内容Training1)validation我们使用分层抽样(stratified sampling)的方法,将已标注的数据集分出10%作为验证集(validation)。由于数据集过小,我们在验证集上的评估受到噪声的影响比较大,因此,我们也在排行榜上的其他模型上测试了我们的验证集。2)training algorithm所有的模型都是在加了Nesterov momentum的SGD优化
翻译
博文更新于 2016.03.06 ·
2149 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

kaggle-浮游生物分类比赛一等奖---译文(第一部分)

原文 :Classifying plankton with deep neural networkcode:code作者在这次的比赛中获得了一等奖,team name是Deep Sea概要1)介绍2)预处理和data augmentation3)network 结构4)模型训练5)非监督和半监督方法6)model averaging7)汇总(Miscellany)8)总结介绍1)要
翻译
博文更新于 2016.03.06 ·
3397 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

深度学习资料汇总

title: 深度学习资料汇总 categories: - Summarize整理了平时自己用到的一些DL的资源网站deeplearning.netUFLDL机器学习日报kaggle winner solution斯坦福人工智能实验室课程列表+ppt强化学习资料汇总机器学习资料汇总卷积网络Trick卷积网络Trick-EnglishOpenCV(python/c++)D
原创
博文更新于 2016.03.06 ·
892 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

What makes for effective detection proposals?

论文笔记 《What makes for effective detection proposals?》 最近开始准备回到detection大坑,刚好看到一篇关于object proposal的综述,而且貌似是中了PAMI的,所以就下载下来读了一下。论文的项目地址:https://www.mpi-inf.mpg.de/departments/computer-vision-and-m
转载
博文更新于 2015.10.02 ·
1479 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

LSTM与GRU的一些比较--论文笔记

reference:Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling1.概要:传统的RNN在训练long-term dependencies 的时候会遇到很多困难,最常见的便是vanish gradient problen。期间有很多种解决这个问题的方法被发表。大致可以分为两类:一类是以新的方法改
原创
博文更新于 2015.10.01 ·
70136 阅读 ·
4 点赞 ·
1 评论 ·
70 收藏

Batch Normalization 简单理解

1:背景由于在训练神经网络的过程中,每一层的 params是不断更新的,由于params的更新会导致下一层输入的分布情况发生改变,所以这就要求我们进行权重初始化,减小学习率。这个现象就叫做internal covariate shift。2:idea思想虽然可以通过whitening来加速收敛,但是需要的计算资源会很大。而Batch Normalizationn的思想则是对于每一组batch,在网络
原创
博文更新于 2015.10.01 ·
28987 阅读 ·
3 点赞 ·
1 评论 ·
18 收藏
加载更多