AI产品经理教程
码龄4年
求更新 关注
提问 私信
  • 博客:1,288,323
    1,288,323
    总访问量
  • 1,173
    原创
  • 1,399
    排名
  • 7,710
    粉丝
  • 3
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2022-05-03

个人简介:该来的总会来,不用去猜

博客简介:

m0_70486148的博客

查看详细资料
个人成就
  • 获得15,616次点赞
  • 内容获得32次评论
  • 获得15,048次收藏
  • 代码片获得2,693次分享
  • 原力等级
    原力等级
    9
    原力分
    8,974
    本月获得
    104
创作历程
  • 284篇
    2025年
  • 442篇
    2024年
  • 373篇
    2023年
  • 74篇
    2022年
成就勋章
TA的专栏
  • 网络安全
    18篇
  • 黑客入门
    3篇
  • 程序员
    1篇
  • 数据分析
    3篇
  • Python学习
    22篇
  • Python入门
    25篇
  • 人工智能
    1篇
  • Python副业
    4篇
  • Python爬虫
    4篇
  • 渗透测试
    1篇
  • Python
    1篇
  • Python前景
    3篇
  • 自动化办公
    1篇
  • Web安全
    6篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • Python
    pythonpygame
  • 编程语言
    pythonjava开发语言
  • 人工智能
    机器学习深度学习数据分析
  • 学习和成长
    职场和发展面试程序人生学习方法跳槽改行学it
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

n8n、扣子太难用了,Vibe Workflow才是更大众的解

Refly.AI 是开源的。开源仓库地址:https://github.com/refly-ai/refly如果你之前用 n8n、Claude Skills 或者其他 Workflow 平台,他们还做了产品化的迁移功能,可以一键把那边的东西导过来运行。Vibe Workflow 的核心逻辑是:用 Agent 节点替代传统 Workflow 节点,降低搭建门槛,收集行为数据做飞轮。赌的是模型能力持续提升,产品站在肩膀上跟着涨。
原创
博文更新于 15 小时前 ·
477 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

AI提示词工程完全指南(超详细)从入门到精通,一篇搞定!建议收藏!

提示词工程的优化与迭代提示词工程强调通过不断优化提示词,提高大模型的输出质量。
原创
博文更新于 15 小时前 ·
501 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

大模型应用开发实战:从踩坑到精通,收藏这篇就够了!

本文分享了一个智能问答系统的开发优化过程。针对三个不同子场景的智能问答需求,作者最初采用纯RAG技术建立三个知识库,但效果不佳,出现场景判断不清和召回率低的问题。后通过重新思考,改为按数据类型建立两个知识库(结构化与非结构化),并实现条件查询和相似度查询两个工具,让模型根据需求自主选择。此方案简化了技术实现,大幅提升了系统效果,解决了场景区分和混合数据查询问题。大模型应用开发流程正确,但结果不一定正确。由于大模型技术的复杂性,再加上不同业务场景的特殊需求,导致大模型应用的开发难度很大;
原创
博文更新于 前天 17:52 ·
722 阅读 ·
15 点赞 ·
0 评论 ·
4 收藏

一张图看懂本体与知识图谱的关系(超详细)从零基础到实战精通,收藏这一篇就够了!

知识建模分为数据层和模式层。数据层以图数据库存储事实,通过知识提取生成实体关系,经知识融合去除冗余;模式层借助本体规范概念关系,通过知识推理发现新关联,本体建模明确定义概念联系。数据层实现知识图谱,模式层实现本体建模,共同构建完整知识体系。知识建模在逻辑架构上分为两个层次:数据层和模式层。数据层是以事实为存储单位的图数据库,其事实的基础表达方式是「实体-关系-实体」或者「实体-属性-属性值」。数据层进行知识提取和知识融合。知识提取是基于已有数据生成「实体-关系-实体」;
原创
博文更新于 前天 14:35 ·
559 阅读 ·
10 点赞 ·
0 评论 ·
7 收藏

LangChain实操教程,多智能体协作:从单兵作战到团队协作系统

创建新文件。
原创
博文更新于 前天 14:09 ·
914 阅读 ·
19 点赞 ·
0 评论 ·
24 收藏

LangChain多智能体协作实战教程(超详细)从基础架构到动态循环机制,一篇搞定,值得收藏!

创建新文件。
原创
博文更新于 2025.12.17 ·
960 阅读 ·
14 点赞 ·
0 评论 ·
13 收藏

提示词工程完全指南(超详细)从零基础到精通,一篇就够,建议收藏!

文章介绍了提示词工程作为与大模型交互的核心技术,通过优化输入提示词来释放大模型潜力。提示词具有任务描述、提供上下文和引导输出三大功能,其有效性依赖指示、上下文、例子、输入和输出五大核心要素。文章详细讲解了ICIO框架、链式思维等结构化方法,强调通过明确性、简洁性和结构化来优化提示词,使大模型从工具转变为智能助手,提供高效准确的解决方案。“ 提示词工程是用户与大模型交流的桥梁,提示词的好坏直接影响到模型的效果。”在大模型应用开发中,所有的操作最终的结果都是拼接成提示词输入给大模型,因此可以说提示词是大模型应用
原创
博文更新于 2025.12.17 ·
877 阅读 ·
25 点赞 ·
0 评论 ·
24 收藏

用小模型办大事!阿里团队用Qwen3-0.6B打造简历求职神器!

阿里团队推出SmartResume智能简历解析系统,使用微调的Qwen3-0.6B小模型和YOLOv10版面检测模型,可在十秒内高效解析简历PDF文件。系统能提取基本信息、工作经历、教育背景等结构化信息,通过版面检测重建阅读顺序,将内容稳定转换为结构化字段,为后续程序提供高质量数据集。项目已开源并提供在线体验,展示了AI模型在企效招聘领域的实际应用。目前的AI科技圈一直在致力于将AI模型能力落地应用,一方面要考虑大参模型部署成本,另一方面又要考虑大模型在应用中的运行效率。
原创
博文更新于 2025.12.11 ·
907 阅读 ·
21 点赞 ·
0 评论 ·
12 收藏

大模型应用理论那么简单,为什么实现起来那么复杂?

本文探讨大模型应用开发中理论与实践的差距,以RAG技术为例说明理解理论不等于掌握应用。RAG作为方法论而非具体技术,其难点在于效果优化而非流程实现。大模型应用开发需丰富经验和细节优化,不同模型和环境需针对性测试调整,效果优化比实现更难。很多人都有这样的感受——大模型应用的理论我都懂,但为什么就是做不好?其实理论的简单性和技术的复杂性,往往都隐藏在那些细节里。“纸上得来终觉浅, 绝知此事要躬行。今天闲的没事回头梳理了一下这大半年来开发过程中所遇到的问题,然后画了一个架构图;
原创
博文更新于 2025.12.05 ·
692 阅读 ·
17 点赞 ·
0 评论 ·
13 收藏

一文搞懂MCP与RAG的区别!从零基础到实战应用,建议收藏!

RAG 让模型“知道得更准”MCP 让模型“干得成事”。在企业落地中,优先明确目标是“回答对”还是“把活儿办了”,再决定单用或组合。如果你正把 LLM 接入企业系统:先用 MCP 打通关键工具/数据,再把检索做成可调用的 RAG 工具——既“会说”,也“会做”。
原创
博文更新于 2025.12.04 ·
768 阅读 ·
26 点赞 ·
0 评论 ·
21 收藏

谷歌最新《Introduction to Agents》白皮书

文章基于谷歌《Introduction to Agents》白皮书,系统介绍了AI智能体的架构设计、能力分级、生产部署、安全治理及自我进化机制。详细解析了智能体的四大核心组件(模型、工具、协调层、部署),五级能力进化路径,以及多智能体协作模式。同时提供了从开发到运维的全流程指导,包括Agent Ops、安全防护、互操作性等关键技术,帮助开发者构建可落地的生产级智能体系统。过去数年,AI的核心价值集中在被动式任务:回答问题、翻译文本、生成图片,每一步都需要人类指令驱动。
原创
博文更新于 2025.12.04 ·
797 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

AI Agent记忆系统搭建教程(超详细)从零基础到精通,收藏这一篇就够了!

记忆,是智能的基石,也是认同的来源。如果要让 AI 从“工具”进化为“伙伴”,它首先得像个老朋友一样,记得你的习惯,懂得你的言外之意。别让你的 Agent 永远停留在“初次见面”。给它装上记忆,从今天开始,在数字荒原里与它共同进化。今天的分享就到这里,如果您觉得还不错,请关注我吧~
原创
博文更新于 2025.12.02 ·
1072 阅读 ·
18 点赞 ·
0 评论 ·
8 收藏

4种易用的本地化部署LLM的方法,从零基础到精通,看完记得收藏!

文章介绍了四种在本地运行大模型的方法:Ollama适合个人本地试验和脚本整合;LMStudio提供类似ChatGPT的界面且支持AMD/Intel集显;vLLM是开源推理引擎可提供OpenAI兼容接口;LlamaCPP是轻量级引擎可在个人电脑CPU或GPU上运行LLM。每种方法都有其适用场景和优势,用户可根据自身需求选择合适的工具。
原创
博文更新于 2025.12.02 ·
620 阅读 ·
27 点赞 ·
0 评论 ·
16 收藏

AI大模型瘦身指南:量化vs蒸馏,两种核心技术详解,收藏备用!

要理解量化,我们首先需要知道:大模型本质上是由海量参数组成的。比如GPT-3,就包含了1750亿个参数。每个参数都是一个数值,而这些数值的存储方式,直接决定了模型占用的空间大小。让我们举个简单的例子。假设某个参数的值是1.2768,为了在计算机中存储这个精确的数值,我们需要开辟一定的内存空间。但如果我们做个"四舍五入",把它简化成1或者1.28,所需的存储空间就会大大减少。这就是量化的核心思想——通过降低数值精度来节省存储空间。随着大模型应用的不断普及,模型压缩技术变得越来越重要。
原创
博文更新于 2025.11.29 ·
1021 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

AI大模型微调实战教程(超详细)从零到精通LoRA技术,一篇就够了,速速收藏!

发现模型在某方面能力不足通过训练更新模型参数得到能力提升的新模型微调本质:学习参数的改动量Δ全量微调:学习所有参数,资源消耗大LoRA灵感:参数改动存在冗余性微调悖论:我们希望改动有限,避免遗忘矩阵分解:用两个小矩阵近似大矩阵Rank参数:控制信息量和参数量的平衡资源节省:可降低90%以上的成本。
原创
博文更新于 2025.11.29 ·
1452 阅读 ·
21 点赞 ·
0 评论 ·
24 收藏

大模型的“积木”:一文读懂Token是什么

看到这里,你应该彻底明白Token是什么了吧?再用一句话概括:Token是大模型把人类语言拆成的、能理解和处理的最小“语言积木”,它负责把文字翻译成模型能懂的数字信号,再把模型的数字信号翻译回文字,是我们和大模型沟通的核心桥梁。下次再看到“Token限制”“Token计费”,就不会觉得陌生了——你只需要知道:输入的文字越多,Token数量就越多,模型的“工作量”也越大。如果想节省费用或避免回复被截断,就尽量把问题说简洁,可去掉不必要的修饰。
原创
博文更新于 2025.11.28 ·
1135 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

从LangChain和LangGraph看透Agent智能体的真相,从小白到专家

最后,总结一下。大家不要被 Agent 这个词吓倒。无论外面的产品包装得多么花哨,剥开外壳,它们都是由 LangGraph 这种状态机编织出来的网络。LangChain 让我们学会了把大模型当工人用;而 LangGraph 让我们学会了把大模型当经理用,甚至当 CEO 用。当你理解了这三种图的模式,并且知道怎么组合它们时,你就已经比 99% 的人更懂 Agent 了。至于 LangChain 和 LangGraph 的具体代码怎么写,那些add_nodeadd_edge。
原创
博文更新于 2025.11.28 ·
352 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

跟我学LangChain:入门指南,基于LLM构建强大AI应用

本文详细介绍LangChain框架,一个简化LLM应用开发的工具。解析其核心概念(组件与链)、三大应用场景及六大模块,包括模型I/O、数据连接、链、记忆、Agent和回调处理器。通过代码示例展示从环境配置到创建聊天机器人、Agent及加入记忆功能的完整开发流程,帮助开发者快速构建响应式AI应用。当开发者构建LLM应用时,可能会遇到很多API接口、数据格式、工具等,特别是一个非AI领域的开发者,要研究入门总觉得有很大的负担。LangChain 就是为了让你跨越这道门槛,让LLM应该的开发更加简单。01。
原创
博文更新于 2025.11.27 ·
837 阅读 ·
15 点赞 ·
0 评论 ·
10 收藏

3 张动图秒懂 A2A 协议:打造高效 Multi-Agent 协同机制

随着 AI Agent(智能体)技术的爆发,未来我们也必将从“人与 AI 对话”的时代迈向“AI 与 AI 协作”的时代。然而,目前的 Agent 大多像是“独行侠”——它们各自拥有相关的专业能力,却很难跨越框架、跨越服务器进行协作。而Google 发布的为了解决这类问题。其作用未来或许可以和Anthropic 推出的— 1 什么是 A2A (Agent2Agent) 协议?准化 AI Agent 之间通信的开放标准是一套旨在标准化 AI Agent 之间通信的开放标准。
原创
博文更新于 2025.11.27 ·
527 阅读 ·
22 点赞 ·
0 评论 ·
20 收藏

多智能体系统:AI时代的软件模块化

多智能体系统(MAS)是用大语言模型(LLM)实现的模块化系统。在MAS中,每个模块称为一个"智能体"(Agent),多个智能体协作完成复杂任务,每个智能体具备真正的模块特征:明确的边界、各自独立的生命周期、清晰的输入输出接口、彼此隔离的运行时上下文。与传统软件模块相比,智能体的特殊之处在于它使用自然语言定义(而非编程语言),可以理解复杂的意图和上下文,可以自主决策执行策略(而非机械执行指令),可以使用工具完成任务(如搜索、读写文件)。
原创
博文更新于 2025.11.25 ·
947 阅读 ·
15 点赞 ·
0 评论 ·
23 收藏
加载更多