程序员辣条
码龄4年
求更新 关注
提问 私信
  • 博客:2,973,530
    社区:243
    动态:832
    2,974,605
    总访问量
  • 2,149
    原创
  • 329
    排名
  • 12,972
    粉丝
  • 33
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-12-20

个人简介:纵有疾风起,人生不言弃

博客简介:

m0_65555479的博客

查看详细资料
个人成就
  • 获得41,976次点赞
  • 内容获得255次评论
  • 获得37,224次收藏
  • 代码片获得10,427次分享
  • 原力等级
    原力等级
    9
    原力分
    9,731
    本月获得
    266
创作历程
  • 1679篇
    2025年
  • 468篇
    2024年
  • 4篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 程序人生
    6篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 19

TA参与的活动 4

TA的推广
兴趣领域 设置
  • Python
    python
  • 其他
    经验分享
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

29人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

零基础转行大模型:从城市规划到提示词工程师的蜕变之路(收藏学习)_转行在大模型公司做Prompter是种怎样的体验

从城市设计到大模型:一位提示词工程师的转行之路 一位城市规划硕士分享了从设计院转行至大模型公司的经历。在设计院工作期间,他逐渐意识到行业局限性,ChatGPT的出现让他看到了AI的潜力。通过自学AI知识,他成功转型为提示词工程师(prompter),薪资翻倍至30万。新工作带来更合理的作息和丰富的职业体验,但也面临创新压力和行业快速发展的挑战。文章对比了两个行业的差异,分享了大模型应用的局限性,并为有意转行者提供了实用建议:先从小公司积累经验,通过持续学习适应技术变革。作者认为,尽管未来充满不确定性,但大模
原创
博文更新于 11 小时前 ·
493 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

30+程序员2个月零基础转行大模型,拿下月薪2w+offer!转行经验全分享,助你突破职业瓶颈_36岁程序员转行大模型

文章讲述了一位32岁北漂程序员在十年传统开发工作后,面临职业瓶颈转行大模型领域。作者分析了大模型行业机遇(高薪、技术前沿、市场需求)和不同岗位要求差异,提供了转行大模型的学习路径和资源,包括基础知识、机器学习理论、数据处理、实践项目和工具框架等,帮助有类似困境的程序员成功转型并突破职业瓶颈。
原创
博文更新于 11 小时前 ·
684 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

一文搞懂LangChain多模态:DeepSeek+content_blocks实战,从小白到工程师的必学之路

本文介绍了LangChain v1中多模态输入输出的标准化实现方案。通过content_blocks统一处理文本与图片数据,结合DeepSeek推理模型和Ollama+deepseek-OCR,构建了从图片识别到文本推理的完整链路。文章以报表截图分析为例,展示了如何将多模态输入转化为结构化输出,并强调了标准结构在中间件、安全审计和可观测性方面的优势。实现方案采用先OCR识别图片再文本推理的务实路径,既避免依赖闭源API,又保持了工程标准化。
原创
博文更新于 11 小时前 ·
401 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

小米MiMo-V2-Flash大模型深度评测:速度快但能力如何?程序员必看!

文章主要评测了小米最新开源的大模型MiMo-V2-Flash,该模型采用混合注意力机制,总参数309B,激活参数仅15B,在SWE-Bench测试中达到73.4%的准确率,速度高达150输出标记/秒。尽管在多个基准测试中表现优异,但作者实际测试发现其能力一般,尤其在阅读理解和编码能力方面不如Kimi K2 Thinking。模型完全开源,部署速度快,适合需要高推理效率的场景。
原创
博文更新于 11 小时前 ·
372 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

零基础转行大模型全攻略:从入门到就业的完整指南

这篇文章分享了从其他领域转行到大模型的经验和建议,包括转行动机、学习路径、面试准备和行业前景。作者强调行动的重要性,提出分阶段学习法:从理论入门到实践应用,再到面试比赛提升。文章认为大模型如同"锤子"可应用于各行业,目前懂大模型的人才仍稀缺。最后提供了丰富的学习资源,包括思维导图、书籍、视频教程等,帮助读者系统掌握大模型技术,实现职业转型。
原创
博文更新于 11 小时前 ·
622 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

大模型学习全攻略:从入门到精通,附完整学习资料,大模型学习路线非常详细收藏我这一篇就好了

本文介绍大模型的基本概念、学习价值及应用场景,涵盖自然语言处理、医疗、教育等领域。分析大模型时代的机遇与挑战,指出当前领域尚未形成系统性护城河。提供系统化学习路线图和资源,帮助零基础学习者快速入门,掌握AI前沿技术,提升个人竞争力。
原创
博文更新于 前天 10:13 ·
1303 阅读 ·
36 点赞 ·
0 评论 ·
8 收藏

AI产品经理进阶全攻略:4大方向+4级成长路径详解

文章提出AI时代产品经理四大成长方向:善用AI工具提升生产力、掌握AI产品实践、自我迭代进化、面向未来的商业思考。每个方向均设计四级进阶路径,从基础应用到高级赋能。作者创建ai4pm.space网站提供系统学习资源,帮助产品经理在AI时代重塑能力,应对未来挑战,实现职业进阶。
原创
博文更新于 前天 10:11 ·
636 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

多模态大模型演进全解析:从CLIP到Qwen3-Omni的三条技术路线,程序员入门到精通指南

多模态大语言模型演进的三条技术路线:CLIP对比学习构建跨模态表征基础;生成模型通过"组装+轻对齐"实现多模态融合;Data Agent系统利用自监督迭代实现自主进化。这些路线共同推动多模态智能从感知对齐迈向行为协同与自主进化,为通用人工智能在多模态领域的落地奠定基础。
原创
博文更新于 前天 10:11 ·
576 阅读 ·
25 点赞 ·
0 评论 ·
20 收藏

LangChain 1.0 智能体开发:create_agent API高级功能实战

文章摘要:本文详细介绍了LangChain 1.0 create_agent API的四大核心功能:通过MCP协议集成外部工具(如高德地图),实现结构化输出返回标准化数据,利用InMemorySaver进行记忆管理保持对话连续性,以及使用中间件机制控制智能体执行流程。文章通过实战案例演示了如何构建高德地图智能规划助手,并对比了三种结构化输出策略的特点。这些功能帮助开发者构建更智能、可靠的AI应用,是掌握LangChain智能体开发的关键技术。(150字)
原创
博文更新于 前天 10:09 ·
792 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

从0到1:非技术背景如何转型AI产品经理,年薪50万+

文章指出AI产品经理是高薪热门职业,非计算机背景者也能入局。核心能力包括:将模糊需求转化为可落地任务的能力;识别适合AI应用场景的商业嗅觉;通过数据测试、反馈和优化驱动AI产品迭代。建议新手通过系统学习、实践项目积累经验,从小处着手,将痛点转化为AI产品方案,从而快速进入这一高薪赛道。
原创
博文更新于 前天 09:50 ·
595 阅读 ·
12 点赞 ·
0 评论 ·
23 收藏

【程序员必学】智能体(Agent)技术:大模型落地的核心载体与应用【收藏指南】

智能体(Agent)作为大模型落地的重要载体,由大脑(LLM)、感知和行动三大模块构成,已从理论走向实践。技术演进经历了AutoGPT、Assistant API到"伐谋"智能体等阶段,应用场景涵盖个人和企业领域。面临知识过时、安全伦理等挑战,但发展趋势向好,有望成为驱动产业变革的关键引擎,实现AI从语言交互到行动执行的转变。
原创
博文更新于 前天 09:49 ·
757 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

大模型应用开发面经汇总:30+大厂面试经验与学习资源,小白程序员必看

本文分享了作者近半年面试30多家大厂的大模型应用开发经验,内容涵盖LLM基础、RAG、微调、Agent等技术,强调动手实践的重要性。建议重点掌握微调原理和实际部署经验,注重项目效果评估和表达清晰度。offer涨幅通常低于20%,建议先拿低期望offer再谈薪。面试需注意技术视野扩展和问题复盘,简历可由大模型润色但需检查避免过度吹嘘。
原创
博文更新于 2025.12.15 ·
1209 阅读 ·
31 点赞 ·
0 评论 ·
11 收藏

MCP服务完全指南:Python实现大模型工具调用与自定义开发

摘要 本文详细介绍了使用Python搭建MCP服务的完整流程。首先通过uv工具初始化项目并配置环境,利用FastMCP SDK开发服务器端,创建自定义工具(如天气查询)。随后介绍了使用Cherry Studio作为MCP Host加载服务的方法,并展示了如何开发Python MCP Client连接服务调用工具。文章从环境配置到实际开发,为开发者提供了从零构建MCP服务的实用指南,涵盖服务端开发、调试测试和客户端对接全流程。
原创
博文更新于 2025.12.15 ·
1008 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

构建自进化AI智能体训练架构:从零开始打造可学习系统(收藏必学)

文章详细介绍了如何构建自进化AI智能体的训练架构,通过强化学习算法(如SFT、PPO和上下文老虎机)、策略建模和分布式训练,使智能体能够基于实时反馈和奖励进行自我改进。系统采用多智能体协作(如LangGraph),设计复杂奖励机制,并通过分层训练循环优化不同角色(初级研究员、高级研究员、主管),最终实现智能体的自适应学习和高效协作能力。
原创
博文更新于 2025.12.15 ·
841 阅读 ·
25 点赞 ·
0 评论 ·
26 收藏

企业AI落地全攻略:从零代码到安全合规,开发者和管理者都该收藏的实战指南

企业AI落地面临数据孤岛、安全合规、技术迭代快等挑战。金蝶AI苍穹Agent开发平台提供两种智能体类型(自主规划和任务编排),内置100+业务工具,支持RAG知识库和多渠道发布。平台具备企业级安全保障,包括权限管控、数据隐私保护和私有化部署选项,并提供运营服务支持。企业AI落地需综合考虑场景、数据、安全与成本,选择真正理解企业管理逻辑的平台,才能让AI成为业务增长引擎而非PPT概念。
原创
博文更新于 2025.12.15 ·
824 阅读 ·
29 点赞 ·
0 评论 ·
15 收藏

大语言模型(LLM)训练全解析:从Transformer架构到实战应用,程序员入门进阶指南

大语言模型(LLM)基于Transformer架构,通过自注意力机制处理语言任务,其训练包含预训练和微调两阶段。核心组件包括输入层、隐藏层和输出层,采用多头注意力机制捕捉长距离依赖关系。模型面临计算资源、偏见等挑战,需优化算法提升效率。LLM在自然语言处理、代码生成等领域广泛应用,正重塑人机交互方式。本文详细解析了LLM架构、训练技术及实际应用,包括分词策略、注意力机制等关键技术要点。
原创
博文更新于 2025.12.15 ·
1029 阅读 ·
21 点赞 ·
0 评论 ·
25 收藏

大语言模型技术深度解析:从预训练到提示学习,小白程序员入门到精通指南

本文系统阐述了大语言模型四大核心技术:预训练、适配微调、提示学习和知识增强。在预训练方面,重点介绍了优化任务设计、热启动机制等高效策略,以及Transformer架构的改进方向;适配微调部分详细解析了指令微调和参数高效学习两大方法,包括指令理解、数据获取和对齐技术;提示学习则对比了Prefix-Tuning、Prompt-Tuning等方法的优劣。文章还提供了104G学习资源包,适合不同层次的学习者系统掌握大模型技术。随着模型规模的扩大,实验表明简单方法也能取得优异效果,展现了参数规模对技术方案选择的重要影
原创
博文更新于 2025.12.12 ·
890 阅读 ·
16 点赞 ·
0 评论 ·
6 收藏

AI编程进阶指南:掌握项目拆解,让大项目开发不再凉凉

本文阐述了AI开发大项目的核心方法论——项目拆解能力。文章指出,与小工具不同,大项目开发需将系统分解为可管理模块,采用三层架构法(数据存储层、业务逻辑层、用户交互层)进行规划。当前AI应作为执行者,人类负责架构设计,通过精准拆解和清晰指令实现人机高效协同,让AI从玩具变为助力开发万行级代码的强大工具。掌握此能力,是AI编程进阶的关键。
原创
博文更新于 2025.12.12 ·
1042 阅读 ·
24 点赞 ·
0 评论 ·
26 收藏

大模型+知识图谱=精准诊断:Graph RAG技术助你掌握罕见遗传病面部表型分析(建议收藏)

本文提出了一种基于Graph RAG的创新方法,通过构建包含6143个节点和19282个关系的面部表型知识图谱(FPKG),结合大语言模型(LLM)提升罕见遗传病的诊断能力。研究采用两种RAG检索方法(Cypher和向量检索),通过四维评估框架验证了八种LLM的性能。结果显示,该方法显著降低了模型幻觉(53.94%),提高了诊断准确性和一致性,为罕见病诊断提供了新思路。研究还讨论了不同RAG方法的优劣,并指出知识图谱覆盖范围是未来改进方向。
原创
博文更新于 2025.12.12 ·
690 阅读 ·
22 点赞 ·
0 评论 ·
9 收藏

收藏这份GPT-5.2深度解析:从AI小白到高手的必经之路

OpenAI发布GPT-5.2模型,在44项职业任务中超越人类专家,分为三个版本。该模型编码能力大幅提升,在软件工程测试中达80%高分;视觉空间理解精准,长文本处理保持近100%准确率;能处理复杂多轮任务,完成完整业务闭环。这标志着AI从"生成内容"向"解决问题"的跨越,为专业知识工作创造经济价值,是程序员和AI学习者必须掌握的新技术标杆。
原创
博文更新于 2025.12.12 ·
835 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏
加载更多