一只小莹啊
码龄4年
求更新 关注
提问 私信
  • 博客:43,649
    视频:23
    43,672
    总访问量
  • 57
    原创
  • 555
    粉丝
  • 68
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2021-10-26

个人简介:松弛,摆烂,头 歌上的作 业可以私 聊我帮 忙做 哦,可加我q q 3871244580

博客简介:

m0_63525059的博客

查看详细资料
个人成就
  • 获得805次点赞
  • 内容获得10次评论
  • 获得498次收藏
  • 博客总排名169,916名
  • 原力等级
    原力等级
    3
    原力分
    396
    本月获得
    0
创作历程
  • 6篇
    2025年
  • 51篇
    2024年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • Python
    python
  • Java
    java
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【深度学习】

比如,利用数据整体的均值或标准差,移动数据,使数据整体以 0为中心分布,或者进行正规化,把数据的延展控制在一定范围内。损失函数是表示神经网络性能的“恶劣程度”的指标,即当前的神经网络对监督数据在多大程度上不拟合,在多大程度上不一致。并且,“使性能的恶劣程度达到最小”和“使性能的优良程度达到最大”是等价的,不管是用“恶劣程度”还是“优良程度”,做的事情本质上都是一样的。因为我们追求的是模型的泛化能力。,还是识别狗,抑或是识别人脸,神经网络都是通过不断地学习所提供的数据,尝试发现待求解的问题的模式。
原创
博文更新于 2025.03.27 ·
302 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

YOLO v5

YOLOv 5包含五个模型版本-YOLOv 5 n、YOLOv 5s、YOLOv 5 m、YOLOv 5l和YOLOv 5x-每个版本在参数计数和性能特征上都不同。YOLOv 5 n是最小、最快的,但精度最低,而YOLOv 5x是最大、最准确的,需要最多的计算资源。这项研究使用YOLOv 5s,因为它在速度和准确性之间取得了平衡,提供了快速推理和实时检测,计算需求较低。YOLOv 5架构由三个组件组成:Backbone用于特征提取,Neck用于多尺度特征融合,Head用于对象检测和分类。
原创
博文更新于 2025.03.24 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多维数组

机器学习的问题大致可以分为分类问题和回归问题。比如,区分图像中的人是男性还是女性的问题就是分类问题。而回归问题是根据某个输入预测一个(连续的)数值的问题。比如,根据一个人的图像预测这个人的体重的问题就是回归问题(类似“57.4kg”这样的预测)。一般地,回归问题可以使用恒等函数,二元分类问题可以使用 sigmoid函数,多元分类问题可以使用 softmax函数。矩阵的乘积是通过左边矩阵的行(横向)和右边矩阵的列(纵向)以对应元素的方式相乘后再求和而得到的。并且,运算的结果保存为新的多维数组的元素。
原创
博文更新于 2025.03.10 ·
216 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

激活函数

神经网络的激活函数必须使用非线性函数。换句话说,激活函数不能使用线性函数。为什么不能使用线性函数呢?因为使用线性函数的话,加深神经网络的层数就没有意义了。h(x)是众多激活函数的一种,叫做阶跃函数,如果将h(x)转换为其他函数,就不是感知机了,是神经网络。等实数(这一点和刚才的平滑性有关)。也就是说,感知机中神经元之间流动的是0。的二元信号,而神经网络中流动的是连续的实数值信号。相对于阶跃函数只能返回。
原创
博文更新于 2025.03.05 ·
281 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

看英语论文的一些术语(计算机相关)

Intersection over Union是一种测量在特定数据集中检测相应物体准确度的一个标准。大致的意思应该是把向量中对应位置加起来,将新向量拼接到原来的向量之后,对应着维数增加。semantic segmentation 语义分割。concatenation 级联,recall 召回率。
原创
博文更新于 2025.03.04 ·
133 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

一些相关知识

感知机算法:X1*W1+X2*W2+b=0,其实是X1,X2空间的一条直线,如果这条直线可以将空间的数值数值分成两部分,可以使用感知机。但是异或的真值表现和空间分布,并不能通过一条直线将空间分成两部分,所以异或使用感知机有局限性。感知机是一个算法,使用感知机算法可以应对不同的情景和表格,只不过改变了权重参数和阈值,并没有改变算法本身的逻辑。通过叠加层,可以实现对非线性的处理—多层感知机。全连接层容易过拟合,全连接层参数多,训练慢。网络每一层的输入都归一化,收敛相对更容易。recall:召回率,查全率。
原创
博文更新于 2025.03.04 ·
331 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

Vim编辑器常用命令

Vim编辑器常用命令,模式切换
原创
博文更新于 2024.11.21 ·
141 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Linux常用命令

根据右侧窗口命令行内的提示,在Begin - End区域内进行代码补充,具体任务如下:在当前目录下新建一个新的文件(名称为newfile);在当前目录下新建一个新的文件夹(名称为newdir);将newfile文件复制一份到newdir目录下并命名为newfileCpy。
原创
博文更新于 2024.11.14 ·
332 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

Linux初体验

根据右侧窗口命令行内的提示,在Begin - End区域内进行命令行语句补充,具体任务如下:切换当前目录到根目录;列出根目录下所有文件和文件夹(包括隐藏文件/文件夹)。
原创
博文更新于 2024.11.14 ·
699 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

第3关:函数的使用范围:Python 作用域

本关的编程任务是补全src/step3/scope.py文件的代码,实现相应的功能。具体要求如下:编写程序,功能是求两个正整数的最小公倍数;要求实现方法:先定义一个private函数 _gcd()求两个正整数的最大公约数,再定义public函数lcm()调用 _gcd()函数求两个正整数的最小公倍数;调用函数lcm(),并将输入的两个正整数的最小公倍数输出。
原创
博文更新于 2024.11.11 ·
820 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

第2关:函数的返回值 - 可有可无的 return

本关的编程任务是补全src/step2/return.py文件的代码,实现相应的功能。具体要求如下:定义一个函数gcd,功能是求两个正整数的最大公约数;调用函数gcd,得到输入的两个正整数的最大公约数,并输出这个最大公约数。
原创
博文更新于 2024.11.11 ·
1374 阅读 ·
39 点赞 ·
0 评论 ·
9 收藏

第1关:函数的参数 - 搭建函数房子的砖

本关的编程任务是补全src/Step1/plus.py文件的代码,实现相应的功能。具体要求如下:定义并调用一个函数,功能是对输入的列表中的数值元素进行累加,列表中元素的个数没有确定;将累加结果存储到变量d中;输出累加结果d。
原创
博文更新于 2024.11.11 ·
1129 阅读 ·
37 点赞 ·
0 评论 ·
16 收藏

第4关:迭代器

本关的编程任务是补全ListCalculate.py文件中的部分代码,具体要求如下:当输入一个列表时,填入将列表List转换为迭代器的代码;填入用next()函数遍历迭代器IterList的代码。
原创
博文更新于 2024.11.11 ·
1052 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

第3关:循环嵌套

本关的编程任务是补全sumScore.py文件中的部分代码,具体要求如下:当输入学生人数后,填入在for循环遍历学生的代码;当输入各科目的分数后的列表后,填入for循环遍历学生分数的代码。
原创
博文更新于 2024.11.11 ·
1218 阅读 ·
20 点赞 ·
0 评论 ·
9 收藏

for 循环与 continue 语句

本关的编程任务是补全checkWork.py文件中的部分代码,具体要求如下:填入循环遍历studentname列表的代码;当遍历到缺席学生时,填入continue语句跳过此次循环。
原创
博文更新于 2024.11.08 ·
1120 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

While 循环与 break 语句

本关的编程任务是补全line.py文件中的判断语句部分,具体要求如下:填入当已处理零件数小于总零件数count < partcount时的while循环判断语句;在停电时填入break语句跳出循环。
原创
博文更新于 2024.11.08 ·
1139 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

误删C盘文件导致wps不可用如何解决(window 11)

一开始是为了清理C盘,然后第二天就发现wps不能用了,刚开始的时候Word,Excel,PowerPoint,OneNote都是空白的,连图标都没有了。有两种修复,可以试试,有时候还是官方的最有用,在网上搜了很久,还是官方厉害,也不用很久,几分钟就好了。点击电脑固定栏左下角的开始。找到你下载的后点击修改。
原创
博文更新于 2024.04.04 ·
2584 阅读 ·
6 点赞 ·
0 评论 ·
2 收藏

最高分与最低分之差

这种代码把最大值和最小值放到一个循环里,一次循环就能算出,但是一开始输入也有一个循环,等所有数据都输入了再计算最大值,最小值,也可以在输入数据时就进行比较,找出最大最小值。min= 0,所有成绩一定小于等于100,一定可以完成替换,最后的min值一定会是某个成绩或者和某个成绩相等。max = 0,所有成绩一定大于等于0,一定可以完成替换,最后的max值一定会是某个成绩或者和某个成绩相等。n个分数,求最高分与最低分之差,分数介于0—100。
原创
博文更新于 2024.03.25 ·
503 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

字母大小写转换

scanf()函数读取成功的时候,返回的是读取的数据的个数。scanf()函数读取失败的时候,返回的是EOF。这样也可以,遇到
就不管它。
原创
博文更新于 2024.03.24 ·
467 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

整数序列删除指定数字,其他数顺序不变

用一个下标 j 来记录不等于 del 的值,下标 j 的值最后等于数组未删除元素的个数。这种代码编写方法只能删除一个指定数字,如果指定数字出现多次,结果并不正确。这里是定义了一个很大的数组,但在支持C99标准的编译器里可以使用变长数组。有时候一个下标解决不了的问题,可以同时使用两个下标。
原创
博文更新于 2024.03.14 ·
755 阅读 ·
17 点赞 ·
0 评论 ·
8 收藏
加载更多