牛大了202X
码龄4年
求更新 关注
提问 私信
  • 博客:328,871
    社区:373
    329,244
    总访问量
  • 118
    原创
  • 33,404
    粉丝
  • 45
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2021-09-24

个人简介:jzc7的博客。数据集等资料都在资源里。

博客简介:

m0_62237233的博客

查看详细资料
个人成就
  • 获得842次点赞
  • 内容获得293次评论
  • 获得3,249次收藏
  • 代码片获得24,526次分享
  • 博客总排名21,524名
  • 原力等级
    原力等级
    7
    原力分
    4,170
    本月获得
    6
创作历程
  • 9篇
    2025年
  • 6篇
    2024年
  • 59篇
    2023年
  • 44篇
    2022年
成就勋章
TA的专栏
  • java
    18篇
  • 408机试
    6篇
  • 力扣HOT100
    4篇
  • golang
  • LLM学习
    4篇
  • nlp
    12篇
  • 数学建模
    11篇
  • c++
    10篇
  • web
    4篇
  • html
    3篇
  • Python深度学习
    28篇
  • GAN
    2篇
  • yolov5
    6篇
  • 机器学习
    9篇
  • redis
    3篇
  • python
    5篇
  • qt
    1篇
  • css
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 7

兴趣领域 设置
  • 人工智能
    计算机视觉机器学习深度学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

后端进阶-性能优化

若必须写入 MySQL:先写到中间分布式写入层(如 TiDB/TiKV/Cockroach),或用分布式 Loader(mydumper/loader 风格),并最终建立索引。分割:分块读入(每次读不超过 4G 的可用内存,比如 100MB 块),在内存里排序(快速排序/堆排序),输出到磁盘生成若干有序小文件(runs)。在 pt-online-schema-change 可配置 --max-load、--critical-load、--chunk-size 等参数。
原创
博文更新于 2025.09.25 ·
1144 阅读 ·
9 点赞 ·
1 评论 ·
28 收藏

[LeetCode力扣hot100]-C++常用数据结构

一个节点指向三个东西,root->val,root->left, root->right。树是一种特殊的数据结构,力扣二叉树相关会直接让你用。题解中上面也有对应的注释。ans.count()//检查某个元素是否在set里,1在0不在。//根据类型定义,像vector。ans.erase()//删除某个指定元素。5.散列表unordered_map。
原创
博文更新于 2025.08.28 ·
461 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

【LLM学习】2-简短学习BERT、GPT主流大模型

阅读《Attention is All You Need》论文,理解自注意力机制和多头注意力。学习BERT、GPT等主流LLM的预训练和微调流程。
原创
博文更新于 2025.06.23 ·
681 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

【LLM学习】论文学习-Qlora: QLoRA: Efficient Finetuning of Quantized LLMs

本文介绍了一种名为QLoRA的创新方法,用于有效微调LLMs(文中Guanaco模型)。这种方法通过减少微调模型所需的内存量,使得原本需要超过780GB GPU内存的6.5B参数模型微调,现在可以在小于48GB的GPU内存下完成,同时保持与16位全参数微调的性能相当。这项技术使得目前最大的公开可用模型能够在单个GPU上微调,显著提高了LLM微调的可行性。so,重点是减少微调模型所需内存的使用——>保持性能的同时,提高了LLM微调的可能性。一种理论上最适合正态分布数据的量化的新的数据类型。
原创
博文更新于 2025.03.21 ·
1206 阅读 ·
19 点赞 ·
0 评论 ·
9 收藏

图解 Transformer笔记

[Transformer整体结构图,与seq2seq模型类似,Transformer模型结构中的左半部分为编码器(encoder),右半部分为解码器(decoder),接下来拆解Transformer。
原创
博文更新于 2025.03.13 ·
1070 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

【LLM学习】1-NLP回顾+Pytorch复习

随着大模型爆火,准备好好深入学习下,根据招聘岗位,总结了下大模型人才需要具备以下能力:深度学习与大模型开发:熟练掌握 PyTorch,了解 TensorFlow,熟悉 Transformer、BERT、GPT 等模型及其微调算法(如 LoRA)。大模型微调与优化:掌握微调方法(Supervised/PEFT)、指令微调、模型对齐、推理性能加速(vLLM、LmDeploy、Ollama 等)。
原创
博文更新于 2025.03.08 ·
898 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

[LeetCode力扣hot100]-堆

典型的Top K问题,(第一遍做是快排+输出,有点太取巧了肯定不行,时间复杂度也不符合O(n))遍历插入时,插入的数据和堆顶(即根节点)对比即可。此题可用小顶堆,小顶堆的特点是父节点<子节点,所以最后。最后的根节点就是整个数组的第K大的元素。
原创
博文更新于 2025.03.07 ·
373 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

[LeetCode力扣hot100]-二叉树相关手撕题

就说左子树-根-右子树顺序,之前也有二叉树相关的文章,基本上递归为主,这里用栈等方式实现下。注意上面给出节点的基本结构,如左右,val指等即可,
原创
博文更新于 2025.03.04 ·
431 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

[LeetCode力扣hot100]-快速选择和快排

腾讯面经高频真题,这题看上去不难,但是难点是复杂度规定为O(n)如果用sort的话 就是O(nlogn)2.统计字符串含有大写字母A的个数。,但是只能收敛于O(n)。想要得到O(n),就要用。能做出来不太合规就是。
原创
博文更新于 2025.02.23 ·
512 阅读 ·
9 点赞 ·
0 评论 ·
2 收藏

[LeetCode力扣hot100]-链表

指针pA遍历完后从headA跳转到headB,pB遍历完headB跳成A。同理不相交的话会遍历a+b,最后会pA=pB=NULL,最后返回空。这样的话最后遍历a+b+c,肯定会最后同时到达相交节点的。思路就是遍历两个链表,有相同的部分就可以视为相交。但是长度不一样,比如两个会相交的链表,
原创
博文更新于 2025.02.19 ·
330 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

[LeetCode力扣hot100]-滑动窗口-例:无重复字符的最长子串

如上图,核心思想就是满足条件的话,让黑色指针右移动;当黑色指针无法移动时,白色指针移动,白指针移动后如果黑色能移动就移动黑色。(0914学习了滑动窗口概念和set用法后才做出来了,需要再练),注意其中的set用法。同类题,只不过字符串换成了数组,上面一道能做出来这道题也能做出来。同时,为了满足这种关系,需要用到set数据结构(不可有重复元素)ans.count()//检查某个元素是否在set里,1在0不在。题目链接在开头,做为测开面试常见手撕题,必须要会做。字节飞书面经里的高频题,没做出来,需要好好复习。
原创
博文更新于 2025.02.18 ·
508 阅读 ·
6 点赞 ·
0 评论 ·
7 收藏

【中等】保研/考研408机试-二分查找(模板题)

二分查找就是在一个有序数组中查找某个值,以首端尾端的中点mid查找对比,mid与要查找的数进行对比,看落在哪个区间,在那个区间重新得到首端和尾端,进而得到新的mid值。
原创
博文更新于 2025.01.21 ·
244 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

动态规划高频题

会与面经题有一个重复的,比如最大股票收益,因为是动归系列,放在一起总结。
原创
博文更新于 2024.09.25 ·
285 阅读 ·
6 点赞 ·
1 评论 ·
1 收藏

如何将图片(matlab、python)无损放入word论文

许多论文对插图有要求,直接插入png、jpg一般是不行的,这是一篇顶刊文章(pdf)的插图,放大2400%后依旧清晰,搜罗了网上的方法,总结了一下如何将图片无损放入论文中。这里主要讨论的是数据生成的图表,像非图表的插图可以参考下面的链接用visio处理后。关于word的使用,office和wps我感觉功能都差不多,看个人喜好选择,以下主要以wps演示。
原创
博文更新于 2024.08.25 ·
4228 阅读 ·
13 点赞 ·
0 评论 ·
24 收藏

【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包)

多重背包模板dp[j]=max(dp[j-v[i]]+w[i],dp[j]) //核心思路代码(一维数组版)dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i])//二维数字版。
原创
博文更新于 2024.05.06 ·
817 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

【入门】保研/考研408机试-基本知识点(输入/出、基本数学、字符串)

练习笔记记录基于和每篇会贴上几个机试原题和我找到题(leetcode、洛谷等)及我的解题思路。(立个flag至少一周一更)这些是比较基础容易忘的,适合小白入手 ,设数组外面去。
原创
博文更新于 2024.05.05 ·
1465 阅读 ·
18 点赞 ·
0 评论 ·
19 收藏

c++回文数判断

#include <bits/stdc++.h>using namespace std;bool huiwen(int x){ int y=x,num=0; while(y!=0){ num=num*10+y%10; y=y/10; } if(num==x) return 1; else return 0;}int main(){ int x; cin>>x; if(huiwen(x)){ cout<<"it is h
原创
博文更新于 2024.05.05 ·
2084 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

【中等】保研/考研408机试-二叉树相关

二叉树的前序、中序、后序遍历的定义: 前序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树;中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。可能有多组测试数据,对于每组数据, 输出将输入字符串建立二叉树后中序遍历的序列,每个字符后面都有一个空格。输入样例可能有多组,对于每组测试样例, 输出一行,为后序遍历的字符串。,长度不超过100。
原创
博文更新于 2024.03.15 ·
1376 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

NLP实战:中文文本分类-Pytorch实现

model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step() # 每一步自动更新# 记录acc与loss。
原创
博文更新于 2024.02.17 ·
8539 阅读 ·
25 点赞 ·
50 评论 ·
131 收藏

在校大学生如何申请软著,手把手教会你(内有免费模板)

目录一.前言二.以学校为单位全流程申请(以我的学校为例)1.问问导员谁负责管软著申请这块的,联系他,问需要什么。2.为了防止学生买软著转头申请3.按以下要求准备材料4.没问题就发给老师,一般要破费一下5.最后得到证书三.个人全流程申请1.登录中国版权登记业务平台官网,尽早实名注册2.官网点击计算机软件著作权相关登记--R11 3.准备好资料,点击我是申请人,填申请信息、开发信息等等逐一填写...4.打印材料、邮寄5.最后等待审核即可,差不多2个月慢的话 随着保研考研等升学形式越来越严峻,it相关
原创
博文更新于 2023.11.25 ·
7014 阅读 ·
6 点赞 ·
2 评论 ·
43 收藏
加载更多