Hi20240217
码龄4年
求更新 关注
提问 私信
  • 博客:483,503
    问答:13
    动态:54,135
    视频:856
    538,507
    总访问量
  • 410
    原创
  • 5,163
    排名
  • 3,447
    粉丝
  • 58
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2021-09-13

个人简介:每天进步一点点

博客简介:

Hi20240217的博客

查看详细资料
个人成就
  • 获得6,345次点赞
  • 内容获得136次评论
  • 获得4,694次收藏
  • 代码片获得2,970次分享
  • 原力等级
    原力等级
    7
    原力分
    3,760
    本月获得
    64
创作历程
  • 184篇
    2025年
  • 226篇
    2024年
成就勋章
TA的专栏
  • 环境搭建
    116篇
  • 代码片段
    211篇
  • 学习
    71篇
  • 调试工具
    60篇
  • 自动化工具
    41篇
  • 流媒体
    12篇
  • AI算法
    31篇
  • 办工
    3篇
  • WEB开发
    2篇
  • 分布式计算
    2篇
  • 随感
    3篇
  • grpc
    3篇
  • 地图功能
    1篇
  • 云平台
    1篇
兴趣领域 设置
  • 后端
    爬虫
  • 移动开发
    web app
  • 人工智能
    深度学习
  • 嵌入式
    嵌入式硬件
  • 运维
    自动化
  • 服务器
    linux
  • 前沿技术
    AIGC
自定义模块
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

24人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 最近

  • 文章

  • 专栏

  • 资源

搜索 取消

CARLA自动驾驶仿真环境搭建与DEMO详解

CARLA是一个开源的自动驾驶仿真平台,基于虚幻引擎构建,提供逼真的虚拟环境用于自动驾驶系统开发。本文介绍了CARLA的特点、环境搭建方法(包括Ubuntu和Windows系统)以及DEMO程序实现。DEMO程序通过6个摄像头和1个激光雷达模拟环视系统,实现车辆和行人检测、3D边界框投影等功能。环境搭建推荐使用Docker方式,包含详细的参数说明和代码示例。该平台解决了真实道路测试中的安全风险、成本高等问题,为自动驾驶研究提供了安全可控的开发环境。
原创
博文更新于 2025.12.13 ·
963 阅读 ·
16 点赞 ·
0 评论 ·
29 收藏

如何实现xtreme1与Apollo相机外参的双向转换

本文介绍了自动驾驶平台xtreme1与Apollo相机外参的双向转换方法。两种格式的主要区别在于:xtreme1使用4×4变换矩阵表示"激光雷达→相机"的变换,而Apollo采用四元数+平移向量表示"相机→激光雷达"的变换。转换的核心是通过矩阵求逆和四元数转换实现格式互通,文中提供了完整的Python实现代码,包括旋转矩阵与四元数间的转换、矩阵求逆等关键步骤,并验证了两种格式的等效性。该转换方法对于多传感器数据融合具有重要意义。
原创
博文更新于 2025.12.12 ·
377 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

计算激光雷达与相机的外参

本文介绍了计算激光雷达与相机外参的方法,用于实现三维点云与二维图像的数据融合。通过手动标注少量对应点,利用PnP算法求解最优变换矩阵,将激光雷达坐标系中的3D点投影到相机坐标系。操作步骤包括:使用CloudCompare选取点云中的3D点,在图像中标记对应2D点,运行主程序计算外参并进行验证。该方法能有效对齐不同传感器数据,为自动驾驶等应用提供精确的多模态信息融合基础,重投影误差通常在几个像素以内,满足实际应用需求。
原创
博文更新于 2025.12.09 ·
783 阅读 ·
14 点赞 ·
0 评论 ·
23 收藏

如何录制浏览器播放的音频?虚拟音频线与Python采集步骤

文章摘要 本文介绍了一种高质量录制浏览器音频的技术方案。针对直接录音存在的噪音问题,采用虚拟音频线(VAC)技术实现浏览器音频的无损采集。主要内容包括:1)安装配置VAC软件;2)设置音频路由将浏览器输出重定向到虚拟设备;3)使用Python编写音频采集脚本,通过PyAudio库从虚拟设备捕获音频数据并保存为WAV文件。该方法避免了环境噪音干扰,绕过了流媒体下载限制,适用于课程录制、会议记录等场景。文中详细提供了从软件安装到代码实现的完整操作步骤,并解释了技术原理。
原创
博文更新于 2025.12.05 ·
743 阅读 ·
34 点赞 ·
0 评论 ·
12 收藏

从Xtreme1标注平台下载数据集

在人工智能和机器学习项目中,高质量的数据集是模型成功的基石。对于自动驾驶、机器人感知等领域,我们经常需要处理包含多种传感器数据的复杂数据集。下面介绍如何从Xtreme1标注平台下载这样的数据集。
原创
博文更新于 2025.12.05 ·
359 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

从Apollo Record到Xtreme1标注格式

本文介绍了将百度Apollo自动驾驶平台的Record数据转换为Xtreme1标注格式的方法。主要内容包括:1) Apollo Record和Xtreme1格式的特点与差异;2) 转换所需的相机标定参数获取;3) 核心转换步骤:录制传感器数据、解析相机参数生成配置文件、提取并转换传感器数据。通过Python脚本实现数据格式转换,使Apollo采集的真实道路数据能够在Xtreme1平台上进行高效标注,为自动驾驶模型训练提供高质量标注数据。
原创
博文更新于 2025.12.05 ·
961 阅读 ·
24 点赞 ·
0 评论 ·
27 收藏

将NuScenes自动驾驶数据集导入Xtreme1标注平台

摘要:本文介绍了将NuScenes自动驾驶数据集转换为Xtreme1标注平台兼容格式的方法。NuScenes数据集包含多传感器数据和3D标注,而Xtreme1平台有其特定的数据组织要求。转换过程包括:1)数据结构映射,建立相机索引对应关系;2)坐标系转换,实现激光雷达与相机数据的对齐;3)点云格式从.bin转为.pcd;4)3D标注信息格式转换。通过Python脚本自动完成这些转换步骤,使用户能够在Xtreme1平台上高效标注NuScenes数据,支持2D/3D融合标注工作。
原创
博文更新于 2025.12.01 ·
886 阅读 ·
15 点赞 ·
0 评论 ·
26 收藏

通过Squid代理在Tailscale中共享L2TP访问权限-改进版本

通过Squid代理在Tailscale中共享L2TP访问权限-改进版本
原创
博文更新于 2025.11.30 ·
634 阅读 ·
6 点赞 ·
1 评论 ·
9 收藏

xtreme1半自动标注平台部署及使用

本文介绍了xtreme1半自动标注平台的部署及使用流程。主要内容包括:1)安装CUDA驱动和Docker环境配置;2)下载xtreme1-v0.9.1软件包;3)拉取所需Docker镜像;4)创建docker-compose.yml文件配置服务(包含nginx、mysql、redis、minio等组件);5)平台启动及健康检查设置。部署完成后可通过端口8190访问平台,实现半自动标注功能。文中提供了详细的操作命令和配置示例,适用于Ubuntu 20.04系统环境。
原创
博文更新于 2025.11.30 ·
640 阅读 ·
16 点赞 ·
1 评论 ·
6 收藏

sustechpoints标注工具的部署及使用

摘要:本文介绍了SUSTechPoints标注工具的部署及使用方法。部署过程通过Docker镜像完成,包括拉取镜像、启动容器和运行服务三个步骤。使用指南包含操作视频演示,用户可通过浏览器访问指定端口使用该工具。该工具为科研数据标注提供了便捷的解决方案。
原创
博文更新于 2025.11.30 ·
314 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

Linux内核模块定时从公网获取Shell脚本并执行

本文介绍了一种通过Linux内核模块实现定时从GitHub获取并执行Shell脚本的技术方案。该方案在内核空间运行,具有隐蔽性高、权限提升和安全执行等特点。核心实现包括:1) 创建定时检查的内核线程,在凌晨1点触发;2) 通过curl命令获取GitHub RAW链接的脚本;3) 使用内核凭证机制提升权限执行脚本。相比用户空间的crontab方案,该技术具有进程不可见、不受用户空间服务影响等优势,适用于自动化运维和批量设备监控等场景。文章详细解析了时间判断、权限提升和命令执行等关键代码逻辑,并提供了完整的实现
原创
博文更新于 2025.11.28 ·
297 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

sustechpoints使用

发布视频 2025.11.28

xtreme1使用

发布视频 2025.11.28

通过Squid代理在Tailscale中共享L2TP访问权限

摘要:本文介绍如何通过Squid代理在Tailscale网络中共享L2TP访问权限。该方案解决多设备访问总部私有网络的问题,仅需一台网关设备建立L2TP连接,其他设备通过Tailscale虚拟网络和Squid代理间接访问总部资源。详细步骤包括L2TP配置、Squid代理设置及路由策略优化,确保HTTP/HTTPS流量安全转发。测试验证表明,该方案能有效实现跨地域网络访问需求。(149字)
原创
博文更新于 2025.11.27 ·
425 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

用遥控器控制履带车-模拟器

本文介绍了基于遥控手柄控制的履带车模拟器实现。系统通过两个独立的步进电机模拟履带车运动,利用差速转向原理实现前进、后退和转向控制。模拟器采用物理引擎计算车辆运动轨迹,并包含手柄校准模块处理不同设备特性。核心功能包括电机速度控制、差速转向计算、物理位置更新和手柄数据归一化处理。使用流程分为环境准备、手柄校准和模拟运行三个阶段,支持通过键盘命令进行系统调试。该模拟器为履带车控制算法开发提供了可视化测试平台。
原创
博文更新于 2025.11.18 ·
1283 阅读 ·
45 点赞 ·
0 评论 ·
20 收藏

Windows Python 获取遥控手柄数据完整指南

本文介绍了通过Python调用Windows DirectInput API获取游戏手柄数据的完整方案。项目采用C++编写核心逻辑并封装为DLL,Python通过ctypes调用,兼具性能与易用性。核心功能包括设备连接、数据读取和自动标定,支持多种手柄设备。实现步骤包含:1)创建DLL接口头文件定义导出函数;2)使用DirectInput API实现手柄连接、数据采集和状态处理;3)通过DIJOYSTATE2结构获取轴/按钮数据并标准化输出。该方案适用于游戏开发、机器人控制等需要实时手柄输入的场景,解决了跨
原创
博文更新于 2025.11.18 ·
385 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

通过透明代理实现NTRIP转发

摘要 本文介绍了通过透明代理实现NTRIP转发的方法,解决无人设备在无网络区域接入千寻RTK服务的问题。RTK技术通过NTRIP协议传输校正数据,但设备可能因网络限制无法直接连接服务。透明代理服务器作为中转站,无需修改客户端配置即可转发数据。操作步骤包括:注册千寻账号获取NTRIP信息、配置GNSS接收机、部署代理服务器并修改设备配置指向代理。文章还提供了代理服务器的Python源码,支持TCP/UDP协议转发,实现设备与RTK服务之间的无缝连接。
原创
博文更新于 2025.11.17 ·
1073 阅读 ·
11 点赞 ·
0 评论 ·
18 收藏

通过SSH转发,访问局域网设备

通过SSH转发访问局域网设备
原创
博文更新于 2025.11.17 ·
383 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

JIRA 8.8 永久授权完整部署指南

本教程将详细指导您完成JIRA 8.8的**完整部署流程**,包括环境准备、数据库配置、许可证激活等关键步骤,即使是技术背景有限的读者也能轻松跟随操作。
原创
博文更新于 2025.11.17 ·
1051 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

Ubuntu 主机序列号克隆指南:原理与实现

本文详细介绍了在Ubuntu系统中克隆硬件序列号的方法,适用于软件授权迁移、测试环境复制等场景。操作步骤包括:1)在源设备备份设备树和固件信息;2)在目标设备覆盖设备树和固件信息;3)验证克隆效果。该方法通过挂载伪造的硬件信息实现序列号克隆,但存在重启失效、内核版本依赖等限制。文章还特别说明了Docker容器中的特殊处理方式,帮助用户在虚拟化环境中实现硬件指纹克隆。
原创
博文更新于 2025.11.17 ·
505 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏
加载更多