BuSong.
码龄5年
求更新 关注
提问 私信
  • 博客:22,902
    22,902
    总访问量
  • 29
    原创
  • 20
    粉丝
  • 54
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
加入CSDN时间: 2021-04-27
博客简介:

m0_57726052的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得2次评论
  • 获得78次收藏
  • 代码片获得718次分享
  • 博客总排名271,940名
创作历程
  • 12篇
    2022年
  • 17篇
    2021年
成就勋章
TA的专栏
  • 数学建模
    4篇
  • 机器学习
    3篇
  • 动手数据分析
    5篇
  • c语言基础题
    8篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

GitModel数学建模 —— 动手学数理统计

相关工具库(一) 总体和样本在一个统计问题中, 我们把研究对象的全体称为总体, 构成总体的每个成员称为个体。总体就是一个概率分布,总体的数量指标就是服从该概率分布的一个随机变量。一般来说,总体分为:有限总体和无限总体, 大多数所说的总体是无限总体。由于总体是无限的,又或者说总体的个体数量太多,如果对每一个个体的数量指标都进行研究所花费的成本将是十分巨大的。为了了解总体的分布, 从总体中随机地抽取 nnn 个个体, 记其指标值为 x1,x2,⋯x_{1}, x_{2}, \cdotsx1​,x2​,⋯
原创
博文更新于 2022.06.25 ·
601 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GitModel数学建模 —— 动手学概率论

在一定条件下,并不总是出现相同结果的现象。现实生活中,我们总是能见到不少的随机现象。很多随机现象是可以大量重复的,如抛一枚硬币可以无限次重复,不同麦穗上的麦粒数可以大量观察等,这种可重复的随机现象又称为随机试验,简称试验。认识一个随机现象首要的是能罗列出它的一切可能发生的基本结果,这里“基本结果”是指随机现象的最简单的结果。随机现象所有基本结果(样本点)的全体称为这个随机现象的样本空间。常用 Ω=\Omega=Ω= {ω}\{\boldsymbol{\omega}\}{ω} 表示,其中元素 ω\omegaω
原创
博文更新于 2022.06.21 ·
661 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GitModel数学建模 —— 动手学线性代数

二元一次方程组的未知数的阶数都是一次,式子两边都是用等式相连,因此我们给这个方程组起另一个名字:线性方程组.什么是向量矩阵的简介例如,求解如下二元一次方程组,(方程组可以用向量形式表示成)我们尝试使用python解线性方程组,中已经封装了求解线性方程组的函数,我们仅需要传入对应的系数矩阵A\mathbf{A}A以及常数向量bbb,程序就会算出相应的结果.(二) 向量空间、矩阵、行列式以及范数2.1 向量的运算法则一个数乘一个向量;一个向量加一个向量;显然,当变量个数变多之后,也会满足
原创
博文更新于 2022.06.17 ·
498 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GitModel数学建模 —— 动手学高等数学

极值点函导数性态代码如下:step 1:求导数step 2:计算零点step 3:计算二阶导数step 4:计算零点处的二阶导数值,验证正负step 5:求函数极小值抽象提炼数学建模中,,, 优化问题是渗透到各个方面的,,, 小到最优参数的确定,,, 大到最优策略的规划. 每一个优化问题都可以以如下标准形式给出 :max⁡f(x)\max f(x)maxf(x)s.t.{gi(x)⩾0,i=1,2,⋯ ,nhj(x)=0,j=1,2,⋯ ,m\mathrm{s.t.} \begin{cas
原创
博文更新于 2022.06.14 ·
374 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

吃瓜教程 —— 第四章

四. 决策树1. 基本流程决策树(decisiontree)是一类常见的机器学习方法.。决策树是基于树结构来进行决策的,通过一系列的判断或“子决策”得到最终决策,其目的是产生一棵泛化能力强,即处理未见示例能力强的决策树。一般的,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点;叶结点对应于决策结果?其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集.从根结点到每个叶结点的路径对应了一个判定测试序列.决策树学习的目的是为了产生一棵
原创
博文更新于 2022.05.25 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吃瓜教程 —— 第三章

三. 线性模型1. 初识机器学习1.1 基本术语1.2 建立关于“预测”的模型任务当预测对象为离散值,称为“分类”任务;当预测对象为连续值,称为“回归”任务;当预测对象涉及两个,称为“二分类”任务,其中一个为“正类”,另一个为“反类”;当预测对象为多个时,称为“多分类”任务;将数据集中的数据分成若干组,每组称为一个“簇”,即聚类任务。1.3 学习任务的分类(按照训练集是否拥有标记信息分类)监督学习 —— 分类与回归的代表无监督学习 —— 聚类的代表1.4 科学推理的两大基本手段
原创
博文更新于 2022.05.23 ·
1912 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

吃瓜教程 —— 第一、二章

一. 绪论1. 初识机器学习1.1 基本术语数据集,作为数据记录的集合;示例(样本),关于一个事件或对象地描述;属性(特征),反映事件或对象在某方面的表现或性质的事项;属性值,属性上的取值;属性空间(样本空间、输入空间,属性张成的空间;特征向量,空间中的每一个实例。训练集的介绍从数据中学得模型的过程称为"学习"或"训练", 这个过程通过执行某个学习算法来完成.训练过程中使用的数据称为"训练数据",其中每个样本称为一个“训练样本", 训练样本组成的集合称为"训练集".1.2 建立
原创
博文更新于 2022.05.17 ·
525 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

模型搭建和评估 —— 泰坦尼克任务

第二章:模型搭建和评估开始之前,加载下面的库import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfrom IPython.display import Image%matplotlib inlineplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicod
原创
博文更新于 2022.03.20 ·
1342 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

数据重构 —— 泰坦尼克任务

第二章:数据重构熟悉的开始~# 导入numpy和pandasimport pandas as pdimport numpy as np# 载入data文件中的:train-left-up.csvleft_up = pd.read_csv('train-left-up.csv')left_up.head()2.4 数据的合并2.4.1 任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系# 载入data文件中的:train-left-down.csvleft_down
原创
博文更新于 2022.03.20 ·
319 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据可视化 —— 泰坦尼克任务

第二章:数据可视化开始之前,导入numpy、pandas以及matplotlib包和数据#导入numpy、pandas以及matplotlib包import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 导入数据(result.csv这个文件)df = pd.read_csv(r'result.csv')df.head()2.7 如何让人一眼看懂你的数据?2.7.1 任务一:跟着书本第九章,了解matpl
原创
博文更新于 2022.03.18 ·
3766 阅读 ·
2 点赞 ·
1 评论 ·
48 收藏

数据清洗及特征处理 —— 泰坦尼克任务

第二章:数据清洗及特征处理熟悉的开始~# 导入numpy和pandasimport pandas as pdimport numpy as np#加载数据train.csvdf = pd.read_csv('train.csv')df2.1 缺失值观察与处理2.1.1 任务一:缺失值观察(1) 请查看每个特征缺失值个数# 查看数据内缺失值字段df.info()# 查看每个特征缺失值个数df.isnull().sum()info()用于打印DataFrame的简要摘要,
原创
博文更新于 2022.03.16 ·
3290 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

数据载入及初步观察 + 探索性数据分析 —— 泰坦尼克任务

第一章:数据载入及初步观察实验代码1.1 载入数据1.1.1 任务一:导入numpy和pandas# 导入numpy和pandasimport pandas as pdimport numpy as np1.1.2 任务二:载入数据注:上传本地数据 [ 在 Jupyter 中操作需要 Upload](1) 使用相对路径载入数据pd.read_csv('train.csv')(2) 使用绝对路径载入数据import os # 添加此头文件 否则会报错# 查询数据集的绝对路径o
原创
博文更新于 2022.03.14 ·
2760 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

Maximum Length Even Subarray

题解模板题目题目链接题意一个长度为n的序列 计算其元素和为偶数的连续最长子序列思路1.分类讨论2.结合等差求和公式 找到首项,末项之间存在的关系坑点1.分类考虑全面2.从简单角度进行切入 切莫想得过于复杂代码#include<bits/stdc++.h>using namespace std;int main(){ int t; cin>>t; while(t--) { int n; cin>>n;
原创
博文更新于 2021.11.30 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Programming Languages

题解模板题目题目链接题意起初,使用一种语言仅用两种特征A,B接下来将进行两种操作,第一种将特征改为A1,B1,第二种将特征改为A2,B2思路1.if语句判断坑点1.考虑A=A1,B=B1的情况2.考虑A=B1,B=A1的情况代码#include<bits/stdc++.h>using namespace std;int main(){ int t; cin>>t; while(t--) { int a,b,a1,b1,a2
原创
博文更新于 2021.11.28 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Shuffling Parities

题解模板题目题目链接题意给出一个长度为N的序列A,打乱序列A,创造一个新的序列B其中序列B中的各个元素满足Bi=(Ai+i)mod2找出B序列元素和的最大值思路1.要找出B序列元素和的最大值,即找出尽可能多的Bi的值尽可能大2.Bi的值尽可能大,经思考后得出Bi最大值为1,即(Ai+i)为奇数3.在(Ai+i)中 ,i是固定的,即改变Ai的位置,让其Ai与i的奇偶性不同时进行操作代码#include<bits/stdc++.h>using namespace
原创
博文更新于 2021.11.26 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Travel Pass

题解模板题目题目链接题意分别有两种申请通行证的方式,一种申请需要a分钟,另一种需要b分钟,用一个“0”“1”字符串对其进行记录,从而计算申请花费的总时间思路1.字符串遍历2.记录“0”“1”出现的个数3.输出即为“0”出现的个数乘a,“1”出现的个数乘b代码#include<bits/stdc++.h>using namespace std;string s;int main(){ int t; cin>>t; while(t--)
原创
博文更新于 2021.11.26 ·
606 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Prefix Sums

题目链接:Prefix Sums题目解析:将原序列分成A,B两个长度一样的序列,要求A,B两个序列的前缀和不同,并且A,B两个序列中的元素和相等(为保证其前缀和不同,可对A,B序列中的元素进行排序处理)【构造】#include<bits/stdc++.h>using namespace std;int main(){ int t; int n; cin>>t; while(t--) { cin>>n; if(n%4!=0) //n%2%
原创
博文更新于 2021.11.25 ·
241 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Airline Restrictions

题目链接:Airline Restrictions题目解析:对三个包裹进行处理,仅可携带一个包裹,托运两个包裹,问是否能将包裹全部带走(考虑情况时,需要思考全面)#include<bits/stdc++.h>using namespace std;int num[10];//在main方法上定义数组int main(){ int t; cin>>t; while(t--) { int a,b,c,d,e;
原创
博文更新于 2021.11.25 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

榜单更新模板

更新于8月8号Codeforces Rating排名姓名学校班级CF用户名rating1叶盛南通大学计182uryuuu2409_2季炎3苏展
原创
博文更新于 2021.08.10 ·
498 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CF1512C A-B Palindrome

原题链接:洛谷题目描述You are given a string s consisting of the characters ‘0’, ‘1’,and ‘?’. You need to replace all the characters with ‘?’ in the strings by ‘0’ or ‘1’ so that the string becomes a palindrome and hasexactly a characters ‘0’ and exactly b char
原创
博文更新于 2021.07.13 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多