代码洲学长
码龄5年
求更新 关注
提问 私信
  • 博客:18,017
    18,017
    总访问量
  • 23
    原创
  • 6
    粉丝
  • 146
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2021-01-05
博客简介:

m0_54291751的博客

查看详细资料
个人成就
  • 获得243次点赞
  • 内容获得0次评论
  • 获得264次收藏
  • 代码片获得187次分享
  • 博客总排名46,478名
  • 原力等级
    原力等级
    3
    原力分
    171
    本月获得
    75
创作历程
  • 21篇
    2025年
  • 2篇
    2022年
成就勋章
TA的专栏
  • pytorch
    1篇
  • python
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 20

TA参与的活动 0

兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

卷积神经网络CNN

卷积神经网络就是一个包括卷积层和池化层的神经网络,主要应用于计算机视觉方面,应用场景包括图像分类、目标检测、面部解锁、自动驾驶等。
原创
博文更新于 前天 20:06 ·
482 阅读 ·
21 点赞 ·
0 评论 ·
22 收藏

神经网络基础

归回问题用的最多的损失函数: **Smooth L1;**+ 分类问题用的最多的损失函数: ****(也可以用于二分类);```python# 1. 加载csv文件数据集.data = pd.read_csv('data/手机价格预测.csv')# print(data.head()) # 查看前五行数据# data.info() # 查看数据是否有缺失值# 2. 获取x特征列 和 y标签列.# 3. 把特征列转成浮点型.
原创
博文更新于 2025.12.17 ·
619 阅读 ·
12 点赞 ·
0 评论 ·
23 收藏

神经网络基础

把输入层的特征进行加权求和,通过sigmod映射前面的加权求和结果神经元死亡问题。
原创
博文更新于 2025.12.12 ·
164 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

张量的基本运算

反向传播:基于预测和真实可以得出误差,从而得到损失函数的结果,针对损失函数的结果进行求导,就可以得到本次的梯度值为多少,有了梯度值之后就可以反向更新w和b,会让第二轮的结果更加精准,从而一步步使得值达到最优。tensor[[0,1], [2,4]]->0轴第1个1轴第3个值, 0轴第2个1轴第5个值。规则: (n, m) * (m, p) =(n, p)指定每个维度/轴的索引, tensor[1,2,3]tensor[0轴下标, 1轴下标, ...]tensor[:, 0] ->1轴第一个数据。
原创
博文更新于 2025.12.12 ·
733 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

深度学习基础介绍

卷积层 提取图像特征池化层 特征降维全连接层 将特征的预测映射到输出层。
原创
博文更新于 2025.12.09 ·
721 阅读 ·
12 点赞 ·
0 评论 ·
17 收藏

在XGBoost训练时使用Gain值来评估特征的重要性

特征选择阶段:优先使用Gain值选择最有预测力的特征模型解释:向业务方解释哪些特征对模型预测贡献最大模型优化:识别并处理低Gain值的冗余特征。
原创
博文更新于 2025.12.04 ·
666 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

逻辑回归面试高频问答

逻辑回归是回归算法还是分类算法?为什么名字里有“回归”?答:是分类算法(核心用于二分类)。名字带“回归”是因为其核心依赖线性回归的结构,通过Sigmoid函数将线性输出映射为概率实现分类,本质是“基于回归的分类方法”。逻辑回归的核心作用是什么?主要解决什么类型的问题?答:核心作用是将特征映射为类别概率,实现分类判断;主要解决二分类问题(如垃圾邮件识别、疾病诊断),可通过特定方式扩展到多分类。Sigmoid函数的作用和特点是什么?
原创
博文更新于 2025.12.02 ·
551 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

集成学习的基础概述

如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,也就是说每棵树训练出来都是有很大的差异的;底层是通过打分函数来实现的,来判断一下拆分树之前的打的分,拆分树之后会得到左子树和右子树,如果拆之前的分高就不拆分,如果拆之前的分低则会考虑分裂(基于打分函数的结果来决定是否分支的)把上个弱学习器的残差当作这次学习器的真实值来进行再次预测使得预测值无限逼近于真实值甚至等于真实值,最终预测的结果为中间每次的预测值的累加和。参与组合的模型又叫弱学习器或者基学习器。
原创
博文更新于 2025.12.01 ·
724 阅读 ·
13 点赞 ·
0 评论 ·
27 收藏

线性回归、损失函数、正规方程法与梯度下降法的关系与概念总览

线性回归是模型框架;损失函数定义了优化目标;正规方程法和梯度下降法是两种优化策略,用于最小化损失函数,求解模型参数。选择依据数据量小、特征少 → 正规方程法数据量大、特征多 → 梯度下降法线性回归通过损失函数明确优化目标,正规方程法提供解析解,梯度下降法提供迭代解。两者互补,共同服务于模型参数的求解,适应不同规模与复杂度的实际问题。
原创
博文更新于 2025.11.23 ·
364 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

KNN分类算法实现鸢尾花分类

鸢尾花数据集由著名统计学家Fisher收集整理,是机器学习中最经典的数据集之一。
原创
博文更新于 2025.11.23 ·
665 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

kNN算法(k近邻算法)

导包:sklearn.model_selection.GridSearchCV。
原创
博文更新于 2025.11.22 ·
858 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

Pandas进阶语法

apply()方法用途返回结果长度agg()分组聚合每组一个结果分组转换与原数据相同filter()分组过滤过滤后的数据数据透视聚合后的交叉表。
原创
博文更新于 2025.11.18 ·
358 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

groupby 分组操作全面讲解

groupby是 pandas 中实现"拆分-应用-合并"模式的核心功能,类似于 SQL 中的 GROUP BY。核心思想:将数据按照某个或某些条件分组,然后对每个分组分别进行操作,最后将结果合并。# 自定义函数:计算工资范围# 自定义函数:计算变异系数result = df.groupby('部门').agg({'工资': [salary_range, coefficient_of_variation],'奖金': ['mean', 'sum']})print("自定义聚合结果:")
原创
博文更新于 2025.11.18 ·
437 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

数据分析入门基础学习笔记

数据选择:熟练掌握loc和iloc方法,理解标签与索引的区别分组聚合:groupby配合聚合函数是数据分析的核心数据清洗:排序、去重、极值提取是常见的数据预处理操作可视化:简单的plot方法可以快速查看数据趋势实战思维:结合实际业务需求,灵活组合各种数据操作方法。
原创
博文更新于 2025.11.16 ·
149 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

将 .ipynb 文件转换为 .py 文件的多种方法

bash# 使用自定义模板。
原创
博文更新于 2025.11.16 ·
203 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

pandas 数据类型

属性描述示例dtype返回系列中元素的数据类型(如int64float64object等)s.dtypeshape返回元组,表示系列的维度(格式为(元素数量,)s.shape→(5,)index返回系列的索引(标签),类型为Index对象,可通过tolist()转列表s.indexvalues返回系列中元素的 numpy 数组(不含索引)s.valuesname返回系列的名称(未指定则为None),可赋值修改s.name或s.name = "新名称"size返回系列中元素的总数量(与。
原创
博文更新于 2025.11.15 ·
541 阅读 ·
23 点赞 ·
0 评论 ·
26 收藏

pandas 数据类型

属性描述示例dtype返回系列中元素的数据类型(如int64float64object等)s.dtypeshape返回元组,表示系列的维度(格式为(元素数量,)s.shape→(5,)index返回系列的索引(标签),类型为Index对象,可通过tolist()转列表s.indexvalues返回系列中元素的 numpy 数组(不含索引)s.valuesname返回系列的名称(未指定则为None),可赋值修改s.name或s.name = "新名称"size返回系列中元素的总数量(与。
原创
博文更新于 2025.11.15 ·
964 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

numpy基础入门

numpy的数组类被成为 ndarray ,具有矢量算术运算能力和复杂的广播能力,并且具有执行速度快和节省空间的特点,ndarray的数组中所有元素的类型是相同的该组类对象的属性有ndarray.ndim 维度ndarray.shape 形状ndarray.size 长度ndarray.dtype 元素类型ndarray.itemsize 字节大小。
原创
博文更新于 2025.11.14 ·
841 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

pytorch中torchvision数据集的使用——CIFAR-10dataset数据集

pytorch中torchvision数据集的使用
原创
博文更新于 2025.11.14 ·
5257 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

sql内置函数

函数名称功能说明语法格式示例结果ABS()返回数值的绝对值ABS (数值)ABS(-15.6)15.6MOD()取两个数的余数(模运算)MOD (被除数,除数)MOD(23, 5)3ROUND()按指定小数位数四舍五入ROUND (数值,小数位数)123.46TRUNCATE()按指定小数位数截断数值(不四舍五入)TRUNCATE (数值,小数位数)123.45返回大于等于指定数值的最小整数CEIL (数值) / CEILING (数值)CEIL(4.2)
原创
博文更新于 2025.11.13 ·
658 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏
加载更多