哪车没挂人定位问题才是真正技术活
码龄5年
求更新 关注
提问 私信
  • 博客:292,619
    社区:509
    293,128
    总访问量
  • 675
    原创
  • 2,569
    粉丝
  • 615
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
加入CSDN时间: 2020-08-22

个人简介:算法才是真言

博客简介:

m0_50272029的博客

查看详细资料
个人成就
  • 获得3,723次点赞
  • 内容获得11次评论
  • 获得3,504次收藏
  • 博客总排名19,305名
  • 原力等级
    原力等级
    3
    原力分
    420
    本月获得
    0
创作历程
  • 202篇
    2025年
  • 426篇
    2024年
  • 46篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 香港公司
    1篇
  • RAG大模型
    7篇
  • ai
    51篇
  • 开发指南
    217篇
  • 经历才能让人成长
    54篇
  • 面试
    94篇
  • 心态
    38篇
  • 追女生
    2篇
  • 粤语学习常用字
    51篇
  • 需求分析
    13篇
  • 快速理解
    9篇
  • 沟通
    7篇
  • ekfc
    2篇
  • Saleforce
    5篇
  • agent
    10篇
  • 股票复盘
    1篇
  • 系统对接
    1篇
  • docker
    3篇
  • 英语
    18篇
  • python
    1篇
  • 噪音帮你减少紧张
    1篇
  • 英语语法
    10篇
  • java基础(每天5道)
    17篇
  •  炒股最快的拿走你的结果
  • 英语学习每天三小时30个单词
  • 噪音不礼貌
    1篇
  • 如何更快解决bug
    1篇
  • 简历亮点
  • 全局异常
    2篇
  • 研究生阶段周报
  • 股票
    2篇
  • 考研数学
    1篇
  • 恋爱
    3篇
  • 时间
    1篇
  • 感情
    4篇
  • 探索新技术
    1篇
  • 理财
    3篇
  • 业务如何理解的更好少bug
    2篇
  • 如何提问题-工作
    3篇
  • 算法学习
    2篇

TA关注的专栏 272

TA关注的收藏夹 0

TA关注的社区 18

TA参与的活动 1

兴趣领域 设置
  • Python
    python
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

香港延趣网络科技有限公司这个公司怎么样

✅。
原创
博文更新于 2025.08.04 ·
869 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

这一范式已成为工业界大模型训练的标准流程 掌握这一流程是不是算入门了(多看看b站)

基于这些信息,我会这样回答用户:掌握三阶段训练流程只是入门的一部分,真正的入门还需要理解整个大模型训练的生命周期(从数据准备到部署应用),并具备相关的基础知识(数学、编程、算法等)。该范式已成为OpenAI、Anthropic、国内头部厂商(如阿里、百度)的标准训练流程,熟悉它等于掌握了行业通用方法论[citation:4][citation:6]。数据工程:三阶段流程依赖高质量数据,但数据清洗、标注、分词(如BPE算法)、质量评估等技能需额外学习[citation:1][citation:6]。
原创
博文更新于 2025.06.26 ·
399 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

这一范式已成为工业界大模型训练的标准流程 是不是类似于java开发 的mvc模式

大模型训练的三阶段范式(预训练 → SFT → RLHF)与 Java 开发中的 MVC(Model-View-Controller)模式确实存在架构思想上的相似性——两者都通过“分层解耦”实现复杂系统的模块化分工。核心分层 预训练(基础能力)→ SFT(任务适配)→ RLHF(行为对齐) Model(数据逻辑)→ View(展示)→ Controller(调度) 均将系统拆分为功能独立、顺序协作的模块。MVC的三个组件可以并行开发,而大模型训练的三个阶段是顺序进行的。这是个很好的跨领域思考问题。
原创
博文更新于 2025.06.26 ·
336 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

目前 大模型分三个阶段 第一阶段是语义分析 第二阶段是 微调 第三阶段是 奖赏机制 替换成专业的名称

技术内涵:通过人类对模型输出的偏好标注训练奖励模型(Reward Model),再以强化学习(如PPO算法)优化模型策略,使其输出更符合人类价值观[citation:1][citation:5]。技术内涵:在预训练模型基础上,使用高质量标注数据(如指令-答案对)进行任务适配训练,优化模型对特定任务的响应能力[citation:3][citation:4][citation:5]。预训练是模型能力的“地基”,参数量(千亿级)和数据规模(TB级)决定潜力上限[citation:1][citation:5]。
原创
博文更新于 2025.06.26 ·
335 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

为什么人总是后知后觉呢?在失去以后才能重视

* 作家普鲁斯特曾说:“真正的发现之旅,不在于寻找新的风景,而在于拥有新的眼睛。这种适应性本是进化优势(让我们追求更多),却也让我们**忽视当下拥有的价值**。进化心理学发现:**人对损失的敏感度远高于获得**。现代社会推崇效率与即时反馈(刷短视频、点外卖),导致我们**对需要长期投入的事物(如关系、健康)缺乏耐心**。**人生的智慧常常以遗憾为学费,但毕业证上刻下的,是下一次失去前更深的拥抱。** 你此刻的觉察,已是避免更多“后知后觉”的开始。### **三、进化视角:痛苦是最高效的老师**
原创
博文更新于 2025.06.22 ·
458 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

以后看培训班的老师的课就当是聊天吧(大部分人是 说你了 你还生气没救了,这种人本质是巨婴 希望你不要做 你说成年人了)如果有人天天和我聊天聊我不会的 我很感激 为啥换成老师 就讨厌呢 (老师不想聊天)

这些聊天都是非常有价值的。
原创
博文更新于 2025.05.30 ·
275 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

有了ai以后(理论和实践可以分开了,这才是最激动人心的时候 你只需学理论 实践交给ai 解决很多bug) 学习的难度 已经不在写代码 了,而在于你怎么用软件 只要会用开发软件 (这是唯一的成本)

人活着是要解决自己身上的bug的 程序员活着是解决 代码的bug
原创
博文更新于 2025.05.30 ·
453 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

培训班培训ai大模型开发 做了一个系统:智能文档处理:RAG实现合同解析、法律问答。。没有任何收获 不知道这个项目的重点技术在哪里

用户提到的"合同解析"功能,核心是用RAG解决传统方法的痛点。当你弄清楚了分块、嵌入、向量搜索、提示词构造这些环节的具体实现和原理,并理解它们是如何协同工作来解决实际业务问题时,你才能真正掌握这个项目的精髓,并获得宝贵的实践经验。嗯,用户说参加了一个AI大模型开发的培训班,做了一个叫"智能文档处理:RAG实现合同解析、法律问答"的系统项目,但觉得没有任何收获,不知道项目的重点技术在哪里。使用的合同样本太小或太简单,或者法律问答的问题太泛,导致 RAG 的优势没有充分体现出来,感觉和直接搜文档差不多。
原创
博文更新于 2025.05.30 ·
342 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

你得哄着,一定要这样的教育自己

教育孩子是这样教育自己也是打着不走赶着倒退。
原创
博文更新于 2025.05.30 ·
404 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

我把注意力放在别人身上-注意力分散

注意力分散 分散 他注意力分散的背后并不是为了别人。住酒店 他花钱的背后并不是为你花。
原创
博文更新于 2025.05.29 ·
123 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

广东人都是怎么抵抗湿气重的

网页1提到运动祛湿,如跑步、健走,还有饮食调理,比如避免煎炸、辛辣食物,推荐了广藿香紫苏茶。网页2和网页5强调健脾的重要性,建议用党参、山药、黄芪等食材煲汤,并提到运动促进排湿。最后,结构要清晰,分点回答,每个点下再细分,比如饮食调理分为食材、汤方、茶饮等,并附上引用来源。广东地处亚热带,气候潮湿多雨,湿气易侵入人体,因此广东人积累了一套独特的祛湿方法,涵盖饮食、运动、中医外治及生活习惯等方面。健脾食材:党参、山药、茯苓、白术、芡实等常用于煲汤,增强脾胃运化水湿的能力,如党参白扁豆淮山猪骨汤。
原创
博文更新于 2025.05.29 ·
334 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

学习java开发的时候要从定义一个变量开始 如何给一个变量赋值 这是非常基础的 又非常重要。同理 学ai大模型开发的时候 有没有这样基础而重要的知识呢?

一切都要从基础开始
原创
博文更新于 2025.05.29 ·
341 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

我发现自己从小到大自己有的东西都是别人喂给我的…(做事没动力的真正原因)

如果别人不喂我我就没u有能力获取这也是穷的原因没有人会喂给你钱所以你没钱。
原创
博文更新于 2025.05.28 ·
360 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

聊天记录误删除了(没删除的时候你并不会看)

把指纹建给设置取消了 从流程上杜绝 一切都是为了方便导致的。如果有一个人能天天和我聊天 指导我 我不会是现在这样。如果说你知道这个聊天记录留不住的话。每天存一千 不能图方便。如何解决(很多人想不到)为何要等到失去才珍惜。同理 知道今天留不住。
原创
博文更新于 2025.05.28 ·
171 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

ai发展这么快说不定程序员真的失业了

未来三年程序员不好过 必须把pyhton学会。
原创
博文更新于 2025.05.28 ·
371 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

最幸福是事情是有人手把手带你入门

这样的人很少 只有培训班老师会这样做了。
原创
博文更新于 2025.05.28 ·
315 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

赚钱的底层逻辑应该是增加粉丝量 然后提供有效帮助

如果我有300万粉丝 每个粉丝给我1块钱 就财富自由了。每天像一个问题 我能提供啥帮助。帮助别人 也是在帮助自己。
原创
博文更新于 2025.05.28 ·
363 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

Java面试:每天一篇小故事,搞定面试题。

Java面试:每天一篇小故事,搞定面试题。
原创
博文更新于 2025.05.27 ·
365 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

Hugging Face Transformers(最接近“若依“的AI框架) 学了半年 在项目中不会用怎么办?

好的,用户的问题是学习了Hugging Face Transformers半年,但在项目中不会应用,需要帮助。我需要结合提供的搜索结果来给出有效的解决方案。首先,用户可能已经掌握了基本概念,但在实际项目中使用时遇到了困难。我需要从项目规划、数据准备、模型选择、实际应用场景等方面给出指导。根据搜索结果,Hugging Face的Transformers库提供了丰富的预训练模型和工具,比如pipeline、Trainer类等,这些都是关键点。接下来,用户可能需要具体的步骤和示例代码。
原创
博文更新于 2025.05.27 ·
655 阅读 ·
18 点赞 ·
0 评论 ·
14 收藏

模型是啥 ,为何要建模 ,如何建模 ,如何训练模型,如何验证模型的效果(我感觉这是重要的问题)

训练模型的话,网页12、13、14提到预训练、微调、强化学习等步骤,特别是大语言模型的训练流程。嗯,用户的问题是关于模型的定义、建模的原因、建模步骤、模型训练以及效果验证的。比如定义模型时引用网页1和3,建模步骤引用网页7和9,训练模型引用网页12、13、14,验证效果引用网页15、16、17。模型是对现实世界实体、系统或过程的抽象化表达,通过简化和结构化捕捉本质特征,可分为物理模型(如飞机风洞模型)和数学模型(如线性回归方程)。确定模型用途(如分类、回归、生成)和评估指标(如准确率、均方误差);
原创
博文更新于 2025.05.27 ·
514 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏
加载更多