AGI大模型资料分享员
码龄5年
求更新 关注
提问 私信
  • 博客:1,675,653
    社区:1
    1,675,654
    总访问量
  • 1,178
    原创
  • 1,231
    排名
  • 4,374
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2020-06-23

个人简介:大模型YYDS

博客简介:

m0_48891301的博客

查看详细资料
个人成就
  • 获得16,297次点赞
  • 内容获得65次评论
  • 获得15,672次收藏
  • 代码片获得21,089次分享
  • 原力等级
    原力等级
    9
    原力分
    7,677
    本月获得
    329
创作历程
  • 675篇
    2025年
  • 84篇
    2024年
  • 419篇
    2023年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 编程语言
    python
  • 数据结构与算法
    算法
  • 人工智能
    深度学习自然语言处理tensorflowpytorch图像处理nlp
  • 音视频
    语音识别
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI学习必备:一张图看懂大模型架构(小白到专家必收藏)

理解AI的技术脉络,不是为了成为技术专家,而是为了在AI时代做出更明智的选择。当你知道ChatGPT为什么能写文章,Midjourney为什么能画画,你就能更好地驾驭这些工具,而不是被工具驾驭。
原创
博文更新于 昨天 11:18 ·
580 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

收藏级!大模型学习全攻略:从入门到进阶的系统化成长路径

随着生成式AI的爆发,大模型技术已从前沿科技走向产业落地,渗透到智能客服、代码开发、内容创作、数据分析等多个领域。对于技术从业者而言,掌握大模型不仅是提升竞争力的关键,更是把握行业趋势的核心;对于零基础小白来说,大模型也并非遥不可及,一套科学的学习方法能让你快速跻身赛道。但大模型知识体系庞大,从底层原理到工程实践再到产业应用,跨度极大,容易陷入“碎片化学习”的误区。
原创
博文更新于 昨天 11:15 ·
401 阅读 ·
14 点赞 ·
0 评论 ·
9 收藏

收藏!零基础也能懂的大模型学习指南:从入门到项目实战

随着ChatGPT、文心一言等大模型产品的普及,大模型技术已从前沿科技走进大众视野,成为各行各业数字化转型的核心驱动力。对于程序员、职场人乃至技术爱好者而言,掌握大模型相关技能,不仅能提升工作效率,更能打开职业发展的新赛道。但大模型涉及的知识体系复杂,技术迭代速度快,很多零基础学习者往往陷入“资料越多越迷茫”的困境,不知道该从何处着手。本文专为零基础及新手群体打造,以“循序渐进、实战为王”为核心原则,梳理出一套从基础认知到项目落地的完整大模型学习路径。
原创
博文更新于 昨天 11:14 ·
677 阅读 ·
18 点赞 ·
0 评论 ·
8 收藏

收藏必备!大语言模型在医疗领域的应用与挑战:从理论到实践

大语言模型实际上是一个“大规模生成式预训练语言模型”,其核心目标是通过数学与工程方法探寻人类语言规律,进而实现对文本的理解与生成。这一技术的底层逻辑,源于对人类语言“路径依赖”特性的捕捉——当人们表达时,前文的内容会对后文形成约束(例如“今天天气”后接的内容必然与天气相关),而模型正是通过学习这种约束关系完成对“下一个字符”的预测。传统语言模型基于N元文法构建,受限于训练数据规模与计算能力,仅能基于较短的文本历史(如前2~3个词)预测后续内容,准确率有限。
原创
博文更新于 昨天 11:13 ·
345 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

AI大模型原理详解:从黑盒到核心机制,建议收藏学习

文章通过比喻和图示,解释了AI大模型的核心概念和原理。区分了模型(引擎)与产品(整车)的关系;说明大模型本质是"填空高手",可理解为高级函数;介绍Transformer架构和注意力机制;阐述大模型从"通才"到"专才"的应用过程。文章使用通俗易懂的语言和直观图示,帮助读者理解AI大模型的基本原理和实际应用。聊 AI 大模型时,很多人都会把 “模型” 和 “产品” 弄混。其实这俩的关系特别好理解:就像汽车的 “引擎” 和 “整车”—— 引擎是核心动力,但光有引擎,普通人没法直接用;
原创
博文更新于 前天 11:24 ·
426 阅读 ·
20 点赞 ·
0 评论 ·
7 收藏

35+程序员转大模型必藏指南:告别年龄焦虑,从代码到AI的进阶路

很多35+程序员转型时会担心"比不过刚毕业的年轻人",但实际上,大模型领域的竞争核心不是年龄,而是"学习效率"和"落地能力"。你多年积累的编程思维、问题解决能力、业务理解深度,都是比年轻人更宝贵的财富。别被"转行难"的焦虑困住,从今天开始,打开PyCharm完成第一个Tensor张量操作,或者在Colab上跑通第一份CNN代码——你的大模型之路,就从这一行代码开始。
原创
博文更新于 前天 11:21 ·
820 阅读 ·
24 点赞 ·
0 评论 ·
15 收藏

收藏!2025 Java开发者必看:拥抱大模型,从后端“工具人”到AI架构师的跃迁之路

2025年的技术浪潮中,大模型不是Java开发者的“威胁”,而是突破职业瓶颈的“加速器”。Java的稳定性与大模型的创新性,正共同构筑新一代企业级系统的核心能力——当你用Java代码将大模型的智能,转化为企业可信赖的稳定服务时,就已经完成了从“传统后端”到“AI工程先锋”的蜕变。别再犹豫“要不要学”,而是立刻行动“从哪开始学”。从第一个Spring AI Demo起步,一步一个脚印积累实战经验,你会发现,所谓的“职业危机”,终将成为你职业生涯中最宝贵的“转型机遇”。
原创
博文更新于 前天 11:19 ·
703 阅读 ·
14 点赞 ·
0 评论 ·
17 收藏

【必收藏】19张图详解AI大模型应用架构设计,小白到高手必备指南

本文通过24张图全面解析AI大模型应用架构设计,涵盖技术全景视图、企业级开发知识体系、智能体架构设计、RAG系统、专业架构模式及上下文工程等内容,为读者构建从全局到细节的完整认知链路,是学习大模型架构设计的实用指南。
原创
博文更新于 前天 11:15 ·
527 阅读 ·
19 点赞 ·
0 评论 ·
27 收藏

大模型技术与应用体系梳理:小白入门必看,建议收藏

文章梳理了大模型技术的两大核心:大模型技术(如何构建和改进模型本身,包括数学基础、架构和训练方法)和大模型应用技术(如何有效使用模型,包括AIGC生成、RAG检索增强和Agent扩展)。建议学习者选择细分领域切入,根据能力和兴趣选择合适方向。大模型技术开发是一个复杂的领域,我们需要对其形成基础的认知体系,才能知道我们在做什么以及怎么做。随着对大模型技术应用的理解加深,以及和身边朋友和同事的交流,最近发现一个问题,很多人对大模型技术和应用并没有一个整体的认识;
原创
博文更新于 2025.12.17 ·
684 阅读 ·
28 点赞 ·
0 评论 ·
17 收藏

AI大模型开发全指南:从数据到部署的三层架构详解(程序员必收藏)

AI大模型开发应用是一个多阶段、多技术支持的复杂过程。本文梳理了大模型的开发应用过程,归纳为三个层级:数据、模型和支持层。每个层级都需要专业的技术和工具支持。在数据层,包括数据摄取、数据存储、元数据管理和数据预处理等工作。数据层相关的技术工具包括大数据管理工具、数据目录工具以及数据处理工具。模型层是大模型开发应用的核心,包括模型设计、模型开发、模型部署、模型推理等开发过程。各个开发过程都需要有特定的技术和工具支持。在AI大模型开发应用的同时,还需要关注数据安全、隐私保护和合法合规等问题。
原创
博文更新于 2025.12.17 ·
998 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

【值得收藏】2025AI人才报告:大模型算法成香饽饽,5岗争2人薪资破6万

2025年AI人才流动报告》显示,AI人才市场供需两旺,新发岗位量同比增长超10倍,平均月薪达61475元。算法类岗位最紧缺,尤其是搜索算法人才供需比仅为0.39(5岗争2人)。字节跳动、小红书、阿里巴巴位列招聘榜前三。AI人才流动性高,平均在职时长仅2.02年,62.99%计划一年内跳槽。AI人才已成为企业构建未来竞争力的核心资源,争夺战从增量转向存量深耕。
原创
博文更新于 2025.12.17 ·
1115 阅读 ·
22 点赞 ·
0 评论 ·
7 收藏

【干货收藏】程序员必学:大模型、RAG与智能体开发实战指南

理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将通过上一章的介绍,你可以发现OpenAI已经大规模使用工程化的技术使用户能够基于自己的知识库对其GTP系列大模型进行“增强”,从而实现更加垂直化、个性化的能力。
原创
博文更新于 2025.12.17 ·
946 阅读 ·
11 点赞 ·
0 评论 ·
30 收藏

程序员收藏!AI大模型赋能制造业:4类核心模型+10+应用案例解析

AI大模型是强大的工具,但并非适用于所有场景。在工业和其他领域中,它们应该被视为众多解决方案中的一种,而不是唯一的解决方案。通过与专业知识、定制化模型和创新技术的结合,我们才能最大化 AI 的潜力,实现更高效、更智能的工业发展。此外,大模型的计算资源消耗巨大,对于一些资源受限的企业和机构来说,部署和维护这样的模型可能并不实际。因此,需要根据实际情况和需求,权衡大模型的优势和局限性,选择或设计合适的 AI 解决方案。
原创
博文更新于 2025.12.16 ·
479 阅读 ·
14 点赞 ·
0 评论 ·
13 收藏

必看收藏!2026届校招AI人才需求激增,大模型工程师月薪近2.5万,程序员学习指南

高科技企业成为AI人才需求主力,近60%企业将AI人才纳入核心招聘目标。技术研发岗需求旺盛,数学与算法基础、项目经验成企业最看重因素。大模型算法工程师月薪中位数达2.476万元领跑市场,支持性岗位与核心技术岗位薪资差距显著。当前AI校招市场呈现"需求稳增、结构优化、薪酬分化"三大特征,具备扎实算法基础和项目经验的人才将更具竞争力。
原创
博文更新于 2025.12.16 ·
553 阅读 ·
16 点赞 ·
0 评论 ·
16 收藏

【必藏】大模型学习指南:就业前景+保研建议+技能提升,助你快速入门!

这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括。
原创
博文更新于 2025.12.16 ·
1039 阅读 ·
16 点赞 ·
0 评论 ·
10 收藏

提示词工程完全指南:从入门到精通,让AI为你所用(值得收藏)

提示词工程是大模型应用的核心技术,是用户与大模型交流的桥梁。通过设计优化的提示词,可引导大模型完成特定任务。提示词需包含指令、上下文、示例、输入和输出五大要素。实践中可采用ICIO框架、链式思维等方法,并注重明确性、简洁性和结构化。掌握提示词工程,能使大模型从工具转变为智能助手,提供更高效准确的解决方案。
原创
博文更新于 2025.12.16 ·
851 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

【收藏必备】智能体式RAG指南:从传统RAG到AI智能体驱动的检索增强生成

随着我们从2024年进入2025年,AI领域的焦点正从检索增强生成(RAG)转向更具突破性的技术——智能体式RAG。本文将向您介绍智能体式RAG的概念、实现方法以及其优点和局限性。检索增强生成(RAG)代表了人工智能领域的重大进步,它将大型语言模型(LLM)的生成能力与实时数据检索相结合。虽然LLM在自然语言处理方面展示了卓越的能力,但它们对静态预训练数据的依赖往往导致过时或不完整的响应。RAG通过动态检索外部源的相关信息并将其整合到生成过程中解决了这一限制,从而实现上下文准确和最新的输出。
原创
博文更新于 2025.12.15 ·
585 阅读 ·
28 点赞 ·
0 评论 ·
16 收藏

【收藏】Java程序员转型AI大模型:从入门到进阶的全攻略

Java程序员转型AI大模型,不是一场“跨界冒险”,而是技术能力的迁移与升级。只要按照“夯实理论-攻克工具-升级能力-补足数学-实战积累”的路径稳步推进,就能将自身技术优势转化为大模型领域的核心竞争力。在AI技术飞速发展的时代,尽早迈出转型步伐,就能在新赛道中抢占先机,开启职业发展的全新篇章。
原创
博文更新于 2025.12.15 ·
891 阅读 ·
22 点赞 ·
0 评论 ·
11 收藏

技术干货:LangChain与Dify大比拼:从定位到实战,大模型应用开发工具选型指南

选型维度选 LangChain选 Dify团队能力有 Python/JS 开发能力无代码能力,或希望低代码开发项目复杂度高(多 Agent、复杂 RAG、深度定制)中低(标准化问答、简单工具调用)交付周期长(需编码、测试、调试)短(小时 / 天级上线)运维需求能自行开发监控 / 运维工具希望自带运维 / 管理功能核心诉求灵活、定制、可控高效、便捷、易维护所以对于聪明的你来说,需要学会的是进阶玩法:二者结合。
原创
博文更新于 2025.12.15 ·
1153 阅读 ·
14 点赞 ·
0 评论 ·
10 收藏

【干货收藏】AI大模型学习全攻略:0基础入门,从工具到实战一步到位

很多人总在犹豫“现在学AI是不是太晚了”“我没基础能不能学会”,其实AI大模型的应用才刚刚起步,未来3-5年都是“学习红利期”。0基础从来不是阻碍,方法不对、不敢开始才是。你不需要懂复杂的数学算法,不需要会高深的编程技术,只要明确自己的学习目标,跟着这篇指南的路径,从“用工具解决小问题”开始,一步一个脚印地实践,就能在AI浪潮中找到自己的位置。第三天,用LangChain Studio做一个简单的问答助手;
原创
博文更新于 2025.12.15 ·
810 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏
加载更多