吃吃今天努力学习了吗
码龄9年
求更新 关注
提问 私信
  • 博客:661,369
    动态:991
    662,360
    总访问量
  • 171
    原创
  • 7,944
    排名
  • 14,691
    粉丝
  • 32
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
目前就职: 浙江大学
加入CSDN时间: 2017-03-26

个人简介:研究方向:计算机视觉 计算机图形学 目标检测 三维重建,欢迎交流~

博客简介:

进阶中的程序员吃吃的博客

博客描述:
我不管,我要成为一个优秀又可爱的程序媛~
查看详细资料
个人成就
  • 获得1,111次点赞
  • 内容获得176次评论
  • 获得2,976次收藏
  • 代码片获得4,684次分享
  • 原力等级
    原力等级
    7
    原力分
    3,120
    本月获得
    18
创作历程
  • 6篇
    2025年
  • 28篇
    2024年
  • 10篇
    2023年
  • 26篇
    2022年
  • 22篇
    2021年
  • 30篇
    2020年
  • 17篇
    2019年
  • 34篇
    2018年
成就勋章
TA的专栏
  • 冷冻电镜三维重建
    38篇
  • 就业
  • python
    13篇
  • 开发经验
    30篇
  • 生活随笔
  • 项目备忘录
    3篇
  • 论文写作&英语表达
    3篇
  • 计算机视觉cv
    25篇
  • 计算机数学
    3篇
  • 计算机网络
    9篇
  • 数据结构
    4篇
  • 有事没事刷刷oj
    38篇
  • 图数据
    1篇
  • 论文笔记
    39篇
  • 隐私保护学习
    2篇
  • 框架学习
    2篇
  • React
    1篇
  • C++
    7篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    计算机视觉深度学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

24人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 帖子
  • 社区
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 帖子

  • 社区

搜索 取消

【论文阅读】Gaussian Grouping: Segment and Edit Anything in 3D Scenes

本文提出Gaussian Grouping方法,通过为3D高斯点添加紧凑的身份编码(Identity Encoding),实现开放世界场景的联合重建与分割。该方法利用SAM的2D掩码预测和3D空间一致性正则化监督身份编码学习,无需昂贵3D标注。实验表明,离散分组的高斯点能高效实现高质量3D重建、分割和编辑。相较于NeRF的隐式表示,该方法支持细粒度的物体级场景理解,并展示在物体移除、修复、风格迁移等编辑任务中的优势。核心创新在于将高斯点从纯几何外观建模扩展到具备语义理解能力,为3D场景分析提供新思路。
原创
博文更新于 2025.12.08 ·
715 阅读 ·
17 点赞 ·
0 评论 ·
21 收藏

【论文阅读】Segment Any 3D Gaussians

摘要:本文提出SAGA,一种基于3D高斯(3DGS)的高效3D可提示分割方法。SAGA以2D视觉提示为输入,在4ms内完成3D目标分割,其核心是为每个3D高斯附加尺度门控亲和特征,通过尺度感知对比训练策略实现多粒度分割:(1)从SAM提取的2D mask中学习分割能力;(2)采用软尺度门控机制解决多粒度模糊性,根据3D物理尺度动态调整特征通道权重。实验表明,SAGA在保持实时性的同时达到SOTA分割质量。
原创
博文更新于 2025.10.13 ·
671 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

计算机网络自顶向下第二章习题

 R11:TCP提供可靠的数据传输服务,通信进程可以依靠TCP无差错、按适当顺序交付所有发送的数据;而UDP提供一种不可靠数据传输服务。HTTP、FTP、SMTP和POP3协议都要求数据从发送方无差错、按序地传输到接收方,所以都选择了TCP作为支撑运输协议。 R12:Cookie技术有4个组件:在HTTP响应报文中的一个Cookie首部行。在HTTP请求报文中的一个Cookie首部行。在用户端系统...
原创
博文更新于 2025.04.23 ·
3714 阅读 ·
5 点赞 ·
0 评论 ·
24 收藏

计算机网络自顶向下第三章习题

计算机网络第三章作业R9:接收方通过检查序号可以判断接收到的分组是新的数据还是一次重传,这样可以解决冗余分组问题。 R10:当在信道上发生丢包时,发送方不知道是一个数据分组丢失还是一个ACK丢失,或者只是该分组或ACK过度延时。引入定时器是为了实现基于时间的重传机制。如果在规定的时间内没有收到分组或者该分组的ACK,则可能发生了丢包,则发送方重传该分组。 R14:a. 错误。TCP要求主机B要发送...
原创
博文更新于 2025.04.23 ·
9085 阅读 ·
7 点赞 ·
3 评论 ·
47 收藏

【CryoET】IsoNet使用流程

代表电子断层扫描的。它训练深度神经网络重建电子断层扫描缺失楔块中的有意义内容,使用从原始断层图像中学习到的信息提高信噪比。。以大约 30A 的分辨率观察,IsoNet 生成的断层图像基本上是各向同性的。IsoNet 包含模块:准备star文件、CTF 反卷积、生成掩模、提取、细化和预测。IsoNet 中的所有命令都对 .star 文本文件进行操作,其中包括上述任务的数据和参数的描述和路径。用户可以选择通过 GUI 或命令行使用 IsoNet。在 0.2 版中,用户可以绘制多边形来定义掩模区域。
原创
博文更新于 2025.04.13 ·
1253 阅读 ·
14 点赞 ·
0 评论 ·
22 收藏

【论文阅读|冷冻电镜】CryoMAE: Few-shot Cryo-EM Particle Picking with Masked Autoencoders

传统的颗粒挑选面临着手动操作和自动化方法对低信噪比和不同颗粒方向的敏感性的困扰。现有的基于神经网络的方法通常需要大量标记数据集,限制了其实用性。为了克服这些挑战,本文提出了cryoMAE,一种基于少样本学习的新方法,利用掩蔽自动编码器(MAE)的功能来有效选择冷冻电子显微镜图像中的单个颗粒。cryoMAE只需要一组最少的正颗粒图像进行训练,但在颗粒检测方面表现出很高的性能。此外,自交叉相似性损失的实现确保了颗粒和背景区域的不同特征,从而增强了cryoMAE的鉴别能力。
原创
博文更新于 2025.04.03 ·
1168 阅读 ·
26 点赞 ·
1 评论 ·
23 收藏

【论文阅读|cryoEM】CryoSegNet: 通过集成基础AI分割模型和注意力门控U-Net的精确cryoEM蛋白质颗粒挑选

现有的基于有限数量的冷冻电镜数据训练的方法仍然无法从嘈杂的冷冻电镜图像中准确地挑选蛋白质颗粒。一般基于人工智能的基础图像分割模型,例如SAM( Segment Anything Model),无法很好地分割蛋白质颗粒,因为它们的训练数据不包括冷冻电镜图像。本文提出了CryoSegNet,集成了专门为cryoEM颗粒挑选设计和训练的注意力门控U型网络和SAM。U-Net 首先在大型cryoEM图像数据集上进行训练,然后用于从原始显微图像生成输入,以供SAM进行颗粒挑选。
原创
博文更新于 2025.04.03 ·
823 阅读 ·
20 点赞 ·
1 评论 ·
10 收藏

【经验】重装OpenCV踩雷

重装新版本OpenCV踩雷。
原创
博文更新于 2025.03.19 ·
529 阅读 ·
4 点赞 ·
1 评论 ·
0 收藏

【3DGS相关】Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting

提出了基于每个高斯的嵌入变形方法(E-D3DGS),通过定义每个高斯的变形来提高动态场景重建的质量。将变形分成粗变形和细变形,以分别捕捉慢速和快速运动。由于3DGS提供快速且高质量的新视图合成,将其变形为多个帧以表示动态场景是一种自然的扩展。然而之前的工作未能准确重建复杂的动态场景。我们将失败归因于变形场的设计,该设计是基于坐标的函数,这种方法存在问题,因为3DGS是多个以高斯为中心的场的混合,而不仅仅是单一的基于坐标的框架。为了解决这个问题,我们将变形定义为每个高斯嵌入和时间嵌入的函数。
原创
博文更新于 2025.01.27 ·
1096 阅读 ·
18 点赞 ·
0 评论 ·
27 收藏

【经验】CUDA报错:RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE

清空 Linux 环境变量 LD_LIBRARY_PATH,解决程序运行时由于错误的 LD_LIBRARY_PATH 设置导致的问题。(但好像不能彻底解决)
原创
博文更新于 2025.01.16 ·
432 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

【报错备忘】qt.qpa.plugin: Could not load the Qt platform plugin “xcb“

【代码】【报错备忘】qt.qpa.plugin: Could not load the Qt platform plugin “xcb“
原创
博文更新于 2024.12.18 ·
550 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

【冷冻电镜】RELION5.0使用教程总结

对于您自己的数据,您可能希望使用各种倾斜系列对齐方法,然后比较每种方法生成的断层扫描图像的质量(参见下一步)。通过检查 CtfFind job 的 tilt_series 目录中的star文件来检查几个倾斜系列的散焦值。GitHub上也有人反应这个问题,目前我的解决方案是下载了较低版本的CTFFIND的,降级到4.1.10可以成功运行。此外,logfile.pdf 文件包含所有显微照片的有用参数图,例如散焦、像散、估计分辨率等,以及整个数据集中这些值的直方图。的目录,以及指向此目录的符号链接。
原创
博文更新于 2024.12.05 ·
2772 阅读 ·
18 点赞 ·
0 评论 ·
15 收藏

【冷冻电镜】CTFFIND4.1 安装

安装成功,可执行文件路径就在ctffind-4.1.14文件夹下。又去安装了wxWidgets。然后上面的报错已解决。
原创
博文更新于 2024.12.02 ·
787 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

【投稿经验|latex】导出引用的文献

提交final文章的时候,需要去除没用到的和重复的引用文献。
原创
博文更新于 2024.11.20 ·
475 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

【经验】cryosparc使用踩雷记录

本文记录学习使用cryosparc中遇到的一些问题。
原创
博文更新于 2024.11.05 ·
1014 阅读 ·
3 点赞 ·
2 评论 ·
3 收藏

【经验】cryosparc更新安装踩雷记录

cryosparc 安装排雷
原创
博文更新于 2024.11.05 ·
1609 阅读 ·
7 点赞 ·
4 评论 ·
9 收藏

【论文阅读|cryoET】本周粗读汇总

虽然冷冻电子断层扫描可以以分子分辨率揭示结构,但图像处理算法仍然是解决原位生物分子结构异质性的瓶颈。本文介绍CryoDRGN-ET用于cryoET断层图的异质重建。通过原位恢复肺炎支原体核糖体中已知的翻译状态来验证本文方法。然后对低温聚焦离子束掩模的酿酒酵母细胞进行冷冻电子断层扫描。CryoDRGN-ET揭示了翻译过程中酿酒酵母核糖体的结构景观,并捕获细胞内脂肪酸合酶复合物的连续运动。该方法在CryoDRGN软件中公开可用。(cryoDRGN对ET数据的拓展。
原创
博文更新于 2024.08.28 ·
1018 阅读 ·
4 点赞 ·
1 评论 ·
3 收藏

【扩散模型系列学习】Diffusion Model

本文讲解DDPM模型的原理和公式。
原创
博文更新于 2024.08.26 ·
1210 阅读 ·
22 点赞 ·
0 评论 ·
29 收藏

【Gaussian splatting系列学习】(三)

本文讲解3DGS中的颜色计算、GPU加速和参数估计部分。
原创
博文更新于 2024.08.25 ·
1264 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

【Gaussian splatting系列学习】(二)

本文介绍3DGS算法中如何实现抛雪球。
原创
博文更新于 2024.08.25 ·
1627 阅读 ·
10 点赞 ·
0 评论 ·
12 收藏
加载更多