初夏0811
码龄9年
求更新 关注
提问 私信
  • 博客:7,569,326
    社区:257
    动态:32
    7,569,615
    总访问量
  • 297
    原创
  • 17,951
    粉丝
  • 165
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2017-03-14

个人简介:爱生活,爱写作,不爱加班

博客简介:

初夏0811的博客

查看详细资料
个人成就
  • 基于数据源的数据查询方法及系统专利发明者
  • 获得1,127次点赞
  • 内容获得215次评论
  • 获得2,510次收藏
  • 代码片获得33,379次分享
  • 博客总排名152,331名
  • 原力等级
    原力等级
    8
    原力分
    5,631
    本月获得
    15
创作历程
  • 24篇
    2025年
  • 35篇
    2024年
  • 42篇
    2023年
  • 54篇
    2022年
  • 111篇
    2021年
  • 17篇
    2020年
  • 15篇
    2019年
成就勋章
TA的专栏
  • 爬虫
    11篇
  • 大模型
    19篇
  • docker
    9篇
  • 其他
    1篇
  • kafka
    5篇
  • 工具类
    16篇
  • 数据库
    41篇
  • 经验分享
    18篇
  • 大数据
    7篇
  • 前端
    1篇
  • python
    7篇
  • 设计模式
    1篇
  • 算法
    4篇
  • 编程思想
    1篇
  • java笔记
    152篇

TA关注的专栏 4

TA关注的收藏夹 0

TA关注的社区 19

TA参与的活动 4

兴趣领域 设置
  • 大数据
    mysqlredis
  • 前端
    javascriptcssvue.jsreact.jses6
  • 后端
    node.js
  • 网络与通信
    https
  • 测试
    postman
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【已解决 openFeign异步调用问题 block()/blockFirst()/blockLast()异常】

step1:创建自定义类CustomBlockingLoadBalancerClient.javaCustomBlockingLoadBalancerClient.java继承BlockingLoadBalancerClient.java,并重写方法BlockingLoadBalancerClient#choose(java.lang.String, org.springframework.cloud.client.loadbalancer.Request)/**
原创
博文更新于 2025.06.22 ·
721 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

教你如何获取公众号主页url

在采集公众号文章时,如果有每一篇公众号文章的url还好,可以循环去采集每一篇公众号文章,但为了提高效率,有时候我们只需要访问公众号文章列表主页,并且一次性采集所有的文章列表,如何访问公众号主页呢?
原创
博文更新于 2025.03.22 ·
3863 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

WebDriver采集数据报错【已解决】:Message: stale element reference: element is not attached to the page docume

第一次点击和返回正常,一到第二次点击就报错:Message: stale element reference: element is not attached to the page docume。在爬虫采集数据的过程中,我用的webdriver的方式去加载页面,然后获取了列表的20条数据的相对路径,写了个循环点击元素,再退出详情回到列表,继续点击第二个,第三个。详情一次采集详情数据。查了好多,说是所引用的元素已过时,不再依附于当前页面。确实是因为我点进了详情,又back回到了列表,页面确实刷新了。
原创
博文更新于 2025.03.08 ·
589 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

通过ollama本地化部署deepseek后,通过API方式请求特别的慢

说明在控制终端请求是没问题的,那么模型是可以跑的,那API为什么这么慢呢?
原创
博文更新于 2025.03.03 ·
3235 阅读 ·
6 点赞 ·
1 评论 ·
2 收藏

一图看懂大模型中RAG的流程实现

加载文档读取文档文档分割文档向量化用户输入内容内容向量化文本向量中匹配出与用户提问的向量相似的top_k个匹配出的文本作为上下文和问题一起添加到prompt中提交给LLM生成答案。
原创
博文更新于 2025.02.16 ·
619 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

一招教你如何用大模型帮你生成一份精美的PPT

以上就很容易的生成了markdown文本了,当然你可以继续调优,让大模型重新帮你生成更准确的markdown,也可以在markdown文本的基础上修改文字。当然,以上是我的一个简单的示例,实际工作中,你需要尽量详细的描述你的需求,这样大模型才能更准确的帮你生成切合你业务场景的markdown文本。这里可以选择一系列的工具,因为我们需要生成PPT,所以这里我们选PPT助手,当然,如果你有其他需求,你也可以研究一下其他的工具助手。4) 待大模型回复,生成markdown样式后,点击下方的一键生成PPT即可。
原创
博文更新于 2025.02.15 ·
6503 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

一文了解大模型技术--RAG(Retrieval-Augmented Generation)

如果你觉得大模型回答不够精准、不够贴合实际,那RAG可能就是一个不错的解决方案。简单来说,RAG就是给大模型外挂了一个知识库,让它能借助这些知识回答得更专业、更可靠。检索增强生成,是一种通过整合外部知识库来增强大模型(LLM)的性能的模式。最简单的理解,可以认为是给大模型外挂了一个知识库。
原创
博文更新于 2025.02.15 ·
1204 阅读 ·
10 点赞 ·
0 评论 ·
14 收藏

CPU 和 GPU 有哪些区别?

CPU和GPU 是计算机系统中两个至关重要的组成部分。,专注于处理大量的并行计算任务,尤其是图形处理。,CPU是计算机的核心处理器。
原创
博文更新于 2025.02.15 ·
914 阅读 ·
21 点赞 ·
0 评论 ·
16 收藏

用于构建基于大型语言模型(LLM)的开源框架LangChain介绍及代码实践

推荐看这篇博客,讲的详细且通俗易懂。
原创
博文更新于 2025.02.11 ·
414 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

本地部署大模型后如何调用本地大模型的API?

【代码】本地部署大模型后如何调用本地大模型的API?
原创
博文更新于 2025.02.11 ·
1440 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

清华大学104页《DeepSeek:从入门到精通》

发布资源 2025.02.09 ·
zip

Prompt逆向工程:如何“骗“大模型吐露其Prompt?

逆向工程就是一种从结果反推过程的方法。逆向工程让我们能够在不了解实际原理和过程的情况下,推断出生产结果和相应的需求条件。提示词的逆向工程,主要是让AI大语言模型分析文本,并尝试生成一个能够产生类似结果的提示词。这个过程需要一定的文本分析和总结能力。因此,我建议你使用最新的ChatGPT-4模型来进行这样的尝试,使用其他模型不一定能得到较好的效果。
原创
博文更新于 2025.02.09 ·
1575 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

大模型Prompt 提示词攻击,大语言模型安全的潜在威胁

Prompt 提示词作为人和大语言模型交互的媒介,被不断提起。提示词攻击是一种新型的攻击方式,包括提示词注入、提示词泄露和提示词越狱。这些攻击方式可能会导致模型生成不适当的内容,泄露敏感信息等。Prompt的构建使得预训练大模型能够输出更加符合人类语言和理解的结果,但是不同的prompt的模板依旧有可能会导致一些安全问题和隐私问题的出现。
原创
博文更新于 2025.02.09 ·
2675 阅读 ·
16 点赞 ·
0 评论 ·
34 收藏

chatBox网页端不能加载本地安装的大模型,APP端可以加载出来的解决方案

不用纠结这个吧,可能是bug,网上好像没看到别人出现这个情况,希望可以帮助到出现这种情况的兄弟,我也是自己摸索出来的。下拉框加载不出我本地安装的大模型。
原创
博文更新于 2025.02.09 ·
2033 阅读 ·
6 点赞 ·
2 评论 ·
2 收藏

Linux部署Ollama报错Error: could not connect to ollama app, is it running?

【代码】Linux部署Ollama报错Error: could not connect to ollama app, is it running?
原创
博文更新于 2025.02.08 ·
5851 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

ollama 下载 deepseek 模型,进度条一直卡着不动,甚至回退

我是一直等解决的,我下的是deepseek-r1:1.5b的总共1.1G大小,在windows环境安装下载了2小时,在linux服务器上安装下载花了5小时,而且我所在的网络环境不算差,源头的问题,但总算最后下成功了,启动成功可以用了。网络不好,这种下载都是分块下载的,网络不好中间断了之后下载的那块就会被丢弃,所以会出现进度条倒退的情况。2、ollama run 是在官网下载源,源头服务器访问慢,就像国外网站一样,这个是主要原因。1、等,最好是晚上下载着,等一晚上,明天再看,基本就下成功了。
原创
博文更新于 2025.02.08 ·
13433 阅读 ·
15 点赞 ·
3 评论 ·
6 收藏

【已解决】Linux服务器安装Ollama后,127.0.0.1和localhost可以访问,IP无法访问解决方案

我按照上述改了后确实生效了,可以IP访问了,希望帮助到你。修改完记得ollama一定得重启,重启才会生效。
原创
博文更新于 2025.02.07 ·
7272 阅读 ·
3 点赞 ·
4 评论 ·
5 收藏

本地部署deepseek-r1大模型

进入ollama的官网的Models菜单,搜索deepseek,由于现在热度高,第一个就是deepseek,都不用搜索,点击进去。但是一般下载很慢,甚至没有反应,所以我上传了资源,到我的博客主页 - >资源去下载windows的ollama包吧。
原创
博文更新于 2025.02.07 ·
4904 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

windows-ollama-0.3.10

发布资源 2025.02.06 ·
zip

Linux环境下载Ollama慢或卡顿解决方案

官方下载方式是到ollama官网下载ollama: https://ollama.com/复制下载链接执行:二、卡顿现象执行后经常会出现下载失败或者进度条特别慢的情况,甚至直接退出下载:因为ollama官网下载速度太慢了,可以采用国内镜像源加速器下载,步骤如下:2、使用github文件加速替换github下载地址3、替换后增加可执行权限4、执行sh下载安装执行后效果好很多:
原创
博文更新于 2025.02.06 ·
12361 阅读 ·
5 点赞 ·
5 评论 ·
26 收藏
加载更多