AI产品经理
码龄2年
求更新 关注
提问 私信
  • 博客:711,344
    711,344
    总访问量
  • 536
    原创
  • 2,969
    排名
  • 5,558
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
目前就职: 腾讯
加入CSDN时间: 2024-06-17

个人简介:国内最早一批投身到AGI项目上的工程师之一,吃饱了当时最早的一波红利,大模型也必将成为未来发展的新的方向和趋势,想要快人一步先行了解和学习大模型的可以私信我。

博客简介:

lvaolan168的博客

查看详细资料
个人成就
  • 获得10,866次点赞
  • 内容获得4次评论
  • 获得10,042次收藏
  • 代码片获得1,488次分享
  • 原力等级
    原力等级
    6
    原力分
    2,394
    本月获得
    148
创作历程
  • 204篇
    2025年
  • 333篇
    2024年
成就勋章
TA的专栏
  • 大模型
    24篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 1

兴趣领域 设置
  • 人工智能
    opencv数据挖掘语音识别计算机视觉目标检测机器学习人工智能caffe深度学习神经网络自然语言处理sklearncnnmllibword2vectensorflow目标跟踪keras知识图谱rnnlstm自动驾驶dnn生成对抗网络mxnetpytorch机器翻译语言模型oneflowmlnetpaddlepaddlegrumnnboostingtransformerxlnetbertopenvino边缘计算超分辨率重建智慧城市视觉检测图像处理nlp数据分析scikit-learn聚类集成学习迁移学习分类回归gpt-3spark-mlAI作画tf-idfstable diffusionchatgptDALL·E 2craiyonImagenDreamFusionAudioLMYOLObard文心一言ocr腾讯云AI代码助手
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

29人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

9大高级RAG技术详解:提升大模型检索效果的实战指南

文章介绍9种优化RAG系统的高级技术,包括智能文本分块、重新排序、元数据利用、混合搜索等,解决基本RAG系统的嘈杂结果和不相关上下文问题。文章详细说明如何使用Meilisearch、LangChain等工具实现这些策略,以及如何评估效果,帮助开发者构建更准确、高效的RAG管道,提升大模型性能。
原创
博文更新于 14 小时前 ·
716 阅读 ·
26 点赞 ·
0 评论 ·
18 收藏

让大模型记住你:必学的持久化记忆+动态画像+多智能体框架实现指南

本文提出一种个性化大模型框架,通过持久化记忆(STM/LTM/摘要/用户画像)和多智能体协作(协调/检索/验证/生成)实现自适应、连续性、定制化对话。系统将当前任务、历史交互与用户偏好融入决策上下文,通过反思校验提升回答质量,在长对话场景表现优异。未来将解决冷启动与主动性,使大模型从"会搜"进化为"懂你"。
原创
博文更新于 14 小时前 ·
653 阅读 ·
16 点赞 ·
0 评论 ·
7 收藏

小白程序员必看:大模型与智能体的区别及正确使用场景

本文系统解析了大模型与智能体的本质区别,指出智能体是一种系统级工程方法论,适用于多步骤、动态决策、工具调用等复杂任务。文章详细分析了智能体的优势(规划能力、工具使用、状态维护)和缺陷(成本高、不稳定、调试难),并提供了明确的适用场景判断标准:任务复杂、动态、多工具协作时用智能体;流程固定、目标明确时用大模型即可。最后介绍了提升智能体能力的关键要素:模型选择、提示词设计、工具体系和中间件配置。
原创
博文更新于 前天 18:30 ·
598 阅读 ·
15 点赞 ·
0 评论 ·
9 收藏

大模型本地知识库实战指南:5个行业应用案例详解,小白也能轻松上手

文章介绍本地知识库的RAG机制原理及5个行业应用案例:教育培训、电商、中小企业、法律/金融和制造业。通过构建本地知识库+智能体,企业可将内部知识资产转化为可交互的AI助手,节省时间、提升专业能力,适用于各类知识管理和问答场景。
原创
博文更新于 前天 18:29 ·
606 阅读 ·
12 点赞 ·
0 评论 ·
16 收藏

深入剖析大规模RAG系统延迟瓶颈与系统级优化策略

大规模RAG系统延迟优化需跳出局部思维,采取系统性工程。文章从检索阶段(多级召回、混合检索、智能索引)、上下文管理(重排序、压缩、Prompt优化)、生成阶段(高效推理、量化、推测解码)到系统级编排(多级缓存、负载均衡、异步处理)四个维度,全面剖析了低延迟RAG系统的构建策略。只有将各环节技术有机结合,才能实现真正的高性能、高吞吐RAG系统,这是工程智慧的体现。
原创
博文更新于 2025.12.16 ·
776 阅读 ·
33 点赞 ·
0 评论 ·
8 收藏

提示词工程完全指南:从零开始掌握大模型交互核心技术

本文详细介绍提示词工程这一优化大模型的核心技术,包括基本概念、构成要素及多种使用示例(文本总结、信息提取、逻辑推理等)。深入解析零样本提示、少样本提示、链式思考、自我一致性和思维树等进阶调优技巧,并探讨Prompt攻击与防御策略,帮助用户通过精心设计的指令显著提升大模型输出准确性和实用性,是学习大模型交互技术的必备指南。
原创
博文更新于 2025.12.16 ·
519 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

AI工作流框架全面对比:Dify/Coze/n8n如何选择?

文章对比了三种主流AI工作流框架:Dify适合技术团队开发企业级AI应用,提供专业定制能力;Coze适合普通用户快速拼装聊天机器人,零代码操作;n8n则是自动化工具,连接不同软件实现工作流自动化。通过生动比喻帮助读者理解各框架定位和适用场景,助力根据需求选择合适工具。
原创
博文更新于 2025.12.12 ·
749 阅读 ·
17 点赞 ·
0 评论 ·
11 收藏

Gemini 3.0使用全攻略:零基础也能上手的5种方法,建议收藏

本文详细介绍了无需下载的Gemini 3大模型的五种使用方法:通过Google AI Studio进行聊天和创建网页应用;Google Gemini平台进行创作(有使用限额);LMArena体验和测试不同大模型;ZenMux作为中转站提供免费版使用和API接入;以及Google Antigravity IDE(国内使用困难)。这些方法覆盖从简单体验到专业开发的各种需求,适合不同层次的用户。
原创
博文更新于 2025.12.12 ·
1301 阅读 ·
30 点赞 ·
0 评论 ·
24 收藏

大模型微调技术全解析:程序员必备收藏指南

本文系统介绍大模型微调技术的发展历程与技术路线,详细分析AI发展的四个核心阶段,阐述大模型特点与微调必要性。重点解析PEFT主流技术方案,包括Prompt Tuning、LoRA、QLoRA和AdaLoRA等参数高效微调方法,并探讨未来架构创新、可解释性和伦理等挑战,为AI从业者提供大模型微调的全面技术指南。
原创
博文更新于 2025.12.11 ·
949 阅读 ·
14 点赞 ·
0 评论 ·
27 收藏

AI Agent自我反馈机制:从编程案例看AI如何学会反思与改进

文章介绍了AI Agent的自我反馈机制,通过双智能体架构(生成与验证智能体)和反射协调器,让AI具备元认知能力,能够像人类一样反思和改进工作。以编写质数过滤函数的案例展示,AI从65分初版优化到92分终版,实现从"执行工具"到"学习实体"的进化,标志着AI能力的重要跃迁,能在无人类干预下持续改进。
原创
博文更新于 2025.12.11 ·
1112 阅读 ·
39 点赞 ·
0 评论 ·
14 收藏

企业AI智能体落地全攻略:从失败到ROI300%的6条核心经验

文章总结了企业成功落地AI智能体的六条核心经验:重构人机协同流程而非让员工适配AI;精准匹配AI能力与企业场景;系统管理和考核AI;建立全程监控机制确保输出质量;构建AI能力中台实现能力复用;明确人机协作是价值升级而非替代。强调AI落地的核心是"价值思维"而非"技术思维",所有措施都应围绕提升业务价值展开。
原创
博文更新于 2025.12.10 ·
1077 阅读 ·
33 点赞 ·
0 评论 ·
14 收藏

RAG技术详解:解决大模型四大痛点,小白到专家必备

RAG(检索增强生成)是一种结合信息检索与生成式大模型的AI框架,解决了大模型知识更新不及时、幻觉问题、信息安全和垂直领域知识整合等痛点。其核心流程包括知识准备阶段(数据预处理、内容分块、向量化、入库)和问答阶段(查询预处理、数据检索、信息整合、LLM生成)。通过外部知识库增强,RAG能够提供更准确、更新的答案,并标注信息来源,降低隐私风险。
原创
博文更新于 2025.12.10 ·
610 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

手把手教你计算大模型GPU显存:Llama 70B实战案例

本文详细介绍了大模型GPU显存计算方法,以Llama 70B为例,分析模型权重显存(140GB)、KV Cache显存(800GB)和其他开销(94GB),总计约1TB支持10并发用户。文章提供优化建议,如减少并发数或上下文长度可降低显存需求,并指出显存计算是部署大模型的关键门槛,后续将介绍显存优化技术。
原创
博文更新于 2025.12.09 ·
1019 阅读 ·
32 点赞 ·
0 评论 ·
12 收藏

Agent RFT:让AI Agent自己试错找最优路径,告别繁琐人工调优

本文介绍了OpenAI的Agent RFT(强化微调)技术,这是一种让AI Agent通过自我试错学习的新方法。不同于传统的Prompt工程和监督微调,RFT通过奖励信号让Agent自主探索最优策略,而非人工指导。文章详细解析了RFT的训练原理、评估器设计关键原则、适用场景及实际案例效果,展示了其在提高Agent效率和性能上的显著优势。最后提供了工作流程建议和API使用指南,帮助开发者实践这一技术。
原创
博文更新于 2025.12.09 ·
204 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

构建企业级AI助手:腾飞智能助手开源版大模型应用开发教程

腾飞智能助手(开源版)是基于钉钉平台的AI助手,集成了DeepSeek-V3大模型、知识库、记忆系统和多种工具能力。课程提供从基础入门到企业级项目落地的全流程指导,涵盖系统架构设计、开发环境配置、核心业务逻辑实现及部署。通过实践学习大模型深度集成、向量数据库构建、多工具动态调度等关键技术,打造具备智能对话、知识检索与任务处理能力的AI助手,帮助开发者构建可落地的AI应用开发能力。
原创
博文更新于 2025.12.06 ·
1011 阅读 ·
18 点赞 ·
0 评论 ·
25 收藏

Gemini 3.0 使用全攻略:5种方法教你轻松上手,建议收藏

文章介绍了使用Gemini 3的五种无需下载的方法:1)Google AI Studio支持聊天和创建网页应用;2)Google Gemini可创作图片、写作等但有限额;3)LMArena是体验和比较不同大模型的平台;4)ZenMux提供免费版和API接入;5)Google Antigravity是IDE但国内使用不便。这些方法直接在线使用,适合不同需求的用户。
原创
博文更新于 2025.12.06 ·
2104 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

RAG技术入门到精通:检索增强生成完全解析

RAG(检索增强生成)技术旨在解决大语言模型专业领域知识不足的问题。其核心流程包括数据清洗、文档分块、Embedding嵌入、检索和生成五个关键步骤。文章详细介绍了不同分块策略和检索方法,帮助开发者构建更精准、高效的RAG系统,提升大模型在专业领域的回答质量。
原创
博文更新于 2025.12.05 ·
1143 阅读 ·
32 点赞 ·
0 评论 ·
11 收藏

从入门到精通:AI Agent开发实战指南与经验总结

本文分享了AI Agent开发的实践经验,包括开发前的准备工作(定义成功标准、评测用例集、提示词初始化)和五大调优技巧:结构性提示词设计、减少Few shot、精简输入、拆分小Agent、考虑版本回滚。文章强调好的Agent是在不断测试、迭代、优化中"长"出来的,并提供了具体案例和解决方案,帮助开发者高效构建高质量的AI Agent。
原创
博文更新于 2025.12.05 ·
992 阅读 ·
11 点赞 ·
0 评论 ·
26 收藏

大模型智能体开发指南:从单Agent到多Agent架构设计与实战

本文系统介绍大模型智能体架构设计,涵盖单Agent三大核心能力(规划、工具使用、记忆)及优化方法,工作流编排模式,多智能体系统架构与协作机制,以及从低代码到高代码的演进。帮助开发者理解和实现高效可控的AI智能体系统。
原创
博文更新于 2025.12.03 ·
669 阅读 ·
16 点赞 ·
0 评论 ·
26 收藏

智能体工作流全解析:从AI Agent到实战应用的完整指南

文章系统介绍了智能体工作流(Agentic Workflow)的概念,它结合AI智能体的推理、工具和记忆三大组件,通过规划、工具使用和反思三种模式实现复杂任务的半自主执行。与传统工作流相比,智能体工作流具有更高灵活性和适应性,广泛应用于智能式RAG、研究助理和编码助理等领域。尽管存在复杂性和可靠性挑战,但其自动化和自我纠正能力显著提升了AI处理复杂任务的效率。
原创
博文更新于 2025.12.03 ·
440 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏
加载更多